首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of O, N (CH3)2, NH (CH3), NH2, C2H5, CH3, OH, F, Cl, OF, Br, NO2 and substituents in para- and meta-positions on X-pyridineHF hydrogen bond has been studied by HF, B3LYP and MP2 methods using 6-311++G(d,p) basis set. The relationship between hydrogen bond formation energy ΔE and electron donating (or withdrawing) of substituents has been investigated. In this respect, population analysis has been performed by atoms in molecules (AIM) and natural bond orbital (NBO) theories. The results of AIM and NBO analyses are in good agreement with calculated energy values. The relationship between Hammett coefficient and complexation energy has been established and the ρ constant has been calculated for hydrogen bonding. There is a relationship between σ and ΔE with a correlation coefficient equal to 0.94.  相似文献   

2.
The rotational barriers between the configurational isomers of two structurally related push–pull 4-oxothiazolidines, differing in the number of exocyclic CC bonds, have been determined by dynamic 1H NMR spectroscopy. The equilibrium mixture of (5-ethoxycarbonylmethyl-4-oxothiazolidin-2-ylidene)-1-phenylethanone (1a) in CDCl3 at room temperature to 333 K consists of the E- and Z-isomers which are separated by an energy barrier ΔG# 98.5 kJ/mol (at 298 K). The variable-temperature 1H NMR data for the isomerization of ethyl (5-ethoxycarbonylmethylidene-4-oxothiazolidin-2-ylidene)ethanoate (2b) in DMSO-d6, possessing the two exocyclic CC bonds at the C(2)- and C(5)-positions, indicate that the rotational barrier ΔG# separating the (2E,5Z)-2b and (2Z,5Z)-2b isomers is 100.2 kJ/mol (at 298 K). In a polar solvent-dependent equilibrium the major (2Z,5Z)-form (>90%) is stabilized by the intermolecular resonance-assisted hydrogen bonding and strong 1,5-type S · · · O interactions within the SCCCO entity. The 13C NMR ΔδC(2)C(2′) values, ranging from 58 to 69 ppm in 1ad and 49-58 ppm in 2ad, correlate with the degree of the push-pull character of the exocyclic C(2)C(2′) bond, which increases with the electron withdrawing ability of the substituents at the vinylic C(2′) position in the following order: COPh COEt > CONHPh > CONHCH2CH2Ph. The decrease of the ΔδC(2)C(2′) values in 2ad has been discussed for the first time in terms of an estimation of the electron donor capacity of the S fragment on the polarization of the CC bonds.  相似文献   

3.
The effect of N-protonation and N-deprotonation on structure, NH bond dissociation enthalpies (BDEs) and stabilities of radicals formed on H-abstraction from nitrogen atom of carbamates and their thio- and seleno-analogs have been investigated. For those molecules where experimental results are available for comparison, the ROB3LYP/6-311++G(d,p)//B3LYP/6-31+G* theoretical level is in agreement within the estimated experimental uncertainty. The NH BDE of carbamates H2NC(=X)YCH3 [X = O; Y = O, S, Se] are higher but lower when X = S, Se and Y = O, S, Se in comparison to NH BDE of NH3. DFT calculations indicate that the NH bond dissociation enthalpies are decreased by protonation and deprotonation at nitrogen atom; but the effect of deprotonation is rather smaller than the protonation. The variations are analyzed in terms of stabilities of molecules, their protonated and deprotonated species along with their respective radicals. The electron delocalization from nitrogen, X and Y atoms, electrostatic interactions, conjugative interactions and spin delocalization are the important factors affecting the stability. The spin delocalization and shift of radical center to chalcogen X (X = S, Se) are the main determinants for radical stability.  相似文献   

4.
Hydrazine passes through two transition states, TS1 (phi = 0 degrees ) and TS2 (phi = 180 degrees ), in the course of internal rotation around its N-N bond. The origin of the corresponding rotational barriers in hydrazine has been extensively studied by experimental and theoretical methods. Here, we used natural bond orbital (NBO) analysis and energy decomposition of rotational barrier energy (DeltaE(barrier)) to understand the origin of the torsional potential energy profile of this molecule. DeltaE(barrier) was dissected into structural (DeltaE(struc)), steric exchange (DeltaE(steric)), and hyperconjugative (DeltaE(deloc)) energy contributions. In both transition states, the major barrier-forming contribution is DeltaE(deloc). The TS2 barrier is lowered by pyramidalization of nitrogen atoms through lowering DeltaE(struc), not by N-N bond lengthening through lowering DeltaE(steric). Higher pyramidality of nitrogen atoms of TS2 than that of TS1 explains well why the N-N bond of TS2 is longer than that of TS1. Finally, the steric repulsion between nitrogen lone pairs does not determine the rotational barrier; nuclear-nuclear Coulombic repulsion between outer H/H atoms in TS1 plays an important role in increasing DeltaE(struc). Taken together, we explain the reason for the different TS1 and TS2 barriers. We show that NBO analysis is a useful tool for understanding structures and potential energy surfaces of compounds containing the N-N bond.  相似文献   

5.
The electronic and geometrical structures of thiosulfinic acids, RSSOH, 1, (1a, R = H; 1b, R = CH3; 1c, R = t-C4H9; 1d, R = C6H5; 1e, R = F) and their anions have been investigated by the ab initio and density functional methods. The calculations show that the stability of the thiolo-tautomers of 1, RS(O)SH, and the thiono-tautomers, RS(S)OH, is almost the same in the gas phase, the energy of the thiolo-tautomers being slightly lower. The tautomers of 1 having the thiosulfone structure, RS(O)(S)H, were found to be the least stable. The thiosulfinate anions show ambident character with the negative charge dispersed over terminal O and S atoms and are stabilized by electronegative substituents.  相似文献   

6.
P.J. Krueger  A.O. Fulea 《Tetrahedron》1975,31(16):1813-1816
Barriers to rotation about the CN bond in several unusual thioamides have been studied with 100 MHz 1H-NMR spectroscopy. This rotation is still frozen at 170°C in p-chlorophenylglyoxylthiomorpholide (2) in DMSO-d6. NMR spectra and the IR carbonyl frequencies show that 2b and 2c are the most important resonance forms, the latter making a significant contribution to the bonding in the transition state. The high rotational barrier is related to preferential stabilization of the ground state by the opposed orientation of two parallel dipoles (2b). In the sterically crowded molecules 4–(2′-hydroxythiobenzoyl)morpholine (3) and 1–(2′-hydroxythiobenzoyl)piperidine (4) rapid ring inversion between two chair forms of slightly different energy superimposed on the much slower rotation about the CN bond implies that only a mean value for the rotational barrier height can be obtained experimentally.  相似文献   

7.
The reaction of hexafluoro-cyclo-triphosphazene P3N3F6 with ammonia in acetonitrile has been studied. New compounds, (2-imino-2,4,4,6,6-pentafluoro-2λ5,4λ5,6λ5-cyclo-triphosphaza-1,3,5-trienyl)-2-amino-4,4,6,6-tetrafluoro-2λ5,4λ5,6λ5-cyclo-triphosphaza-1,3,5-triene, P3N3F5–NH–P3N3F4NH2 (2) and cis and trans isomers of non-gem-2,4-diamino-2,4,6,6-tetrafluoro-2λ5,4λ5,6λ5-cyclo-triphosphaza-1,3,5-triene, P3N3F4(NH2)2 (4, 5), were detected by GC/MS, and 31P NMR spectroscopy in reaction mixtures. X-ray diffraction analysis of P3N3F5–NH–P3N3F4NH2 (2) revealed two conformational polymorphs, 2A and 2B, the latter being built up of two different conformers that were further denoted as 2Ba (the same as the single conformer in 2A) and 2Bb. The compound 2 was characterized by spectroscopic methods and its 2D potential energy surface (PES) was described by density functional theory computations depending on two dihedral angles. The calculated PES spans over 30 kJ/mol in energy including 8 local minima and all first and second order saddle points. The occurrence of the two experimentally observed conformers 2Ba and 2Bb seems to be governed by crystal packing effects.  相似文献   

8.

Abstract  

Ab initio and DFT calculations have been performed to characterize some ground state structures of the title molecules. Relative energies, rotational barriers, NBO charges, and dipole moments (μ) have been calculated and analyzed. It has been confirmed that only highly correlated methods (e.g., CCSD) are able to yield the non-planar structure as a minimum, for the H2NNO molecule. On the other hand, all computational levels here employed are able to yield a planar C2NNO frame for the (CH3)2NNO as a minimum. Important correlations between atomic charges and bond distances are discussed. Replacement of H by methyl group increases the rotational barrier and μ values by at least 3 kcal/mol and 0.4 D, respectively. The largest μ values are obtained for the structures in which the nitrogen lone pair is parallel to the NO group π system, and are consistent with a larger contribution of a dipolar resonance structure.  相似文献   

9.
LCAO-MO-SCF calculations are reported for the different stereoisomers of the Mo(CO)4(CH2)2 and Mo(CO)4[C(NH2)2]2 systems. The substitution of the hydrogen atoms by the amino groups in the carbene ligands leads to an almost zero rotational barrier. Steric interactions are therefore expected to govern the barrier for diaminocarbene ligands which are more bulky than C(NH2)2. The rotational isomerism in thesebis carbene MoL4 systems is also discussed in connection with the isolobal analogy between CH2 and C2H4.  相似文献   

10.
The possible noncovalent lone pair‐π/halogen bond (lp···π/HaB) complexes of perhalogenated unsaturated C2ClnF4?n (n = 0–4) molecules with four simple molecules containing oxygen or nitrogen as electron donor, formaldehyde (H2CO), dimethyl ether (DME), NH3, and trimethylamine (TMA), have been systematically examined at the M062X/aug‐cc‐pVTZ level. Natural bond orbital (NBO) analysis at the same level is used for understanding the electron density distributions of these complexes. The progressive introduction of Cl atom on C2ClnF4?n influences more on the lp···π complexes over the corresponding HaB ones. Within the scope of this study, gem‐C2Cl2F2 is the best partner molecule for lp···π interaction with the simple molecules, coupled with the greatest interaction energy (IE) and second‐order orbital interaction [E(2) value], whereas C2F4 is the poorest one. The C2Cl3F·H2CO and C2Cl4·H2CO complexes exhibit reverse lp···π bonding, while the Z/E‐C2Cl2F2·NH3, C2Cl3F·NH3 and C2Cl4·NH3 complexes perform half‐lp···π bonding according to the NBO analysis. The lp···π interaction involving the oxygen/nitrogen and the π‐hole of C2ClnF4?n overwhelms the HaB involving the oxygen/nitrogen and the σ‐hole of the Cl atom. The electron‐donating methyl groups contribute significantly to the two competitive interactions, therefore, DME and TMA engage stronger in the partner molecules than H2CO and NH3. Our theoretical study would be useful for future experimental investigation on noncovalent complexes. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
Reaction of N-(4-R-phenyl)picolinamide (R = OCH3, CH3, H, Cl and NO2) with [Ir(PPh3)3Cl] in refluxing ethanol in the presence of a base (NEt3) affords two yellow complexes (1-R and 2-R). The 1-R complexes contain an amide ligand coordinated to the metal center as a monoanionic bidentate N,N donor along with two triphenylphosphines, a chloride and a hydride. The 2-R complexes contain an amide ligand coordinated to the metal center as a monoanionic bidentate N,N donor along with two triphenylphosphines and two hydrides. Similar reaction of N-(naphthyl)picolinamide with [Ir(PPh3)3Cl] affords two organometallic complexes, 3 and 4. In complex 3 the amide ligand is coordinated to the metal center, via C–H activation of the naphthyl ring at the 8-position, as a dianionic tridentate N,N,C donor, along with two triphenylphosphines and one chloride. Complex 4 is similar to complex 3, except a hydride is bonded to iridium instead of the chloride. Structures of the 1-OCH3, 2-Cl and 4 complexes have been determined by X-ray crystallography. All the complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a IrIII–IrIV oxidation within 0.50–1.16 V vs. SCE and a reduction of the coordinated amide ligand within −1.02 to −1.25 V vs. SCE.  相似文献   

12.
In this investigation, reaction channels of weakly bound complexes CO2HF, CO2HFH2O, CO2HFNH3, CO2HFCH3OH, CO2HFNH2CH3, CO2HFNH(CH3)2 and CO2HFN(CH3)3 systems were studied at the B3LYP/6-311++G(3df,2pd) level. The conformers of syn-fluoroformic acid or syn-fluoroformic acid plus a third molecule (H2O, NH3, CH3OH, NH2CH3, NH(CH3)2 or N(CH3)3) were found to be more stable than the conformers of the related anti-fluoroformic acid or anti-fluoroformic acid plus a third molecule (H2O, NH3, CH3OH, NH2CH3, NH(CH3)2 or N(CH3)3). However, the weakly bound complexes were found to be more stable than either the related syn- and anti- type fluoroformic acid or the acid plus third molecule (H2O, NH3, CH3OH, NH2CH3, NH(CH3)2 or N(CH3)3) conformers. They decomposed into CO2+HF, CO2+H3OF, CO2+NH4F, CO2+(CH3)OH2F, CO2+NH3(CH3)F, CO2+NH2(CH3)2F, or CO2+NH(CH3)3F combined molecular systems. The weakly bound complexes have seven reaction channels, each of which includes weakly bound complexes and their related systems. Moreover, each reaction channel includes two transition state structures. The transition state between the weakly bound complex and anti-fluoroformic acid type structure (T13) is significantly higher than that of internal rotation (T23) between the syn- and anti-FCO2H (or FCO2HH2O, FCO2HNH3, FCO2HCH3OH, FCO2HNH2CH3, FCO2HNH(CH3)2, or FCO2HN(CH3)3) structures. However, adding the third molecule H2O, NH3, CH3OH, NH2CH3, NH(CH3)2 or N(CH3)3 can significantly reduce the activation energy of T13. The catalytic strengths of the third molecules are predicted to follow the order H2O<NH3<CH3OH<.NH2CH3<NH(CH3)2<N(CH3)3.  相似文献   

13.
Prasad V. Bharatam  Amita 《Tetrahedron》2004,60(22):4801-4805
In the current article we report the ab initio study on the stability of S-Nitrosothiols (MeSNO, 1) and their oxidised derivatives (MeS(O)NO, 2) and (MeS(O)2NO, 3). The bond length, bond order, rotational barrier and bond dissociation energy have been calculated and compared with that of sulfenamide (HS-NH2) and its oxidised derivatives sulfinamide (H(O)S-NH2) and sulfonamide (H(O)2S-NH2). The S-N bond dissociation energy in the oxidised state is very small compared to parent RSNO indicating the weakness of sigma bond. NBO analysis suggests that the negative hyperconjugative interactions are very strong in S-nitrosothiols and their oxidised derivatives, which weaken the sigma bond and facilitate the release of nitric oxide.  相似文献   

14.
Ab initio and density functional calculations have been performed on the different possible structures of selenourea(su), urea(u) and thiourea(tu) to understand the extent of delocalisation in selenourea in comparison to urea and thiourea. Selenourea(su-1) withC 2 symmetry has the minima on the potential energy surface at MP2(fu)/6-31+G* level. The C-N rotational barrier in selenourea is 8.69 kcal/mol, which is 0.29 and 0.11 kcal/mol more than that of urea and thiourea respectively at MP2(fu)/6-31+G* level. N-inversion barrier is 0.55 kcal/mol at MP2(fu)6-31+G* level. NBO analysis has been carried out to understand the nature of different interactions responsible for the electron delocalisation.  相似文献   

15.
Detailed study on identification and thermal decomposition of solid title compounds 1 and 2 crystallized from the used aqueous ammonia solutions of Pd(NH3)2(NO2)2 and Pt(NH3)2(NO2)2, has been carried out. Beyond the composition of complexes 1 and 2, their trans square planar configuration have already been recognized by reference IR spectra and powder XRD patterns, nevertheless their exact molecular and crystal structure as of trans-Pd(NH3)2(NO2)2 (1, Pd-NN) and trans-Pt(NH3)2(NO2)2 (2, Pt-NN) has been determined by single crystal X-ray diffraction (R = 0.0515 and 0.0341), respectively. Despite their compositional and configuration analogy, they crystallize in different crystal systems and space groups. The crystals of 1 (Pd-NN) are triclinic (space group No. 2, P-1, a = 5.003(1) Å, b = 5.419(1) Å, c = 6.317(1) Å, α = 91.34(2)°, β = 111.890(10)°, γ = 100.380(10)°), while those of 2 (Pt-NN) are monoclinic (space group No. 5, C2, a = 7.4235(16) Å, b = 9.130(2) Å, c = 4.4847(10) Å, β = 99.405(7)°).The pyrolytic processes of 1 and 2 (which might be sensitive to shock and heat) have been followed by simultaneous thermogravimetric and differential thermal analysis (TG/DTA), while the evolved gaseous species have been traced in situ by online coupled TG/DTA–EGA–MS and TG–EGA–FTIR instruments in He and air. Pd and Pt powders, forming as final solid products in single step, are captured and checked by TG and XRD. Whilst the unified evolved gas analyses report evolution of N2, H2O, NH3, N2O, NO, and NO2 gases as gaseous product components in the exothermic decomposition of both trans-Pd(NH3)2(NO2)2 (1) and trans-Pt(NH3)2(NO2)2 (2) starting from ca. 230 and 220 °C, in sealed crucibles with a pinhole on the top, respectively.  相似文献   

16.
In this paper, a planar atmospheric-pressure dielectric barrier discharge (AP-DBD) of nitrogen mixed with ammonia (0?C2?%) is simulated using one-dimensional self-consistent fluid modeling with cell-centered finite-volume method. This AP-DBD is driven by a 30?kHz power source with distorted sinusoidal voltages. The simulated discharge current densities are found to be in good agreement with the experiment data in both phase and magnitude. The simulated results show that the discharges of N2 mixed with NH3 (0?C2?%) are all typical Townsend-like discharges because the ions always outnumber the electrons very much which leads to no quasi-neutral region in the gap throughout the cycle. N2 + and N4 + are found to be the most abundant charged species during and after the breakdown process, respectively, like a pure nitrogen DBD. NH4 + increases rapidly initially with increasing addition of NH3 and levels off eventually. In addition, N is the most dominant neutral species, except the background species, N2 and NH3, and NH2 and H are the second dominant species, which increase with increasing added NH3. The existence of abundant NH2 plays an important role in those applications which require functional group incorporation.  相似文献   

17.
d-Ribono-1,4-lactone was treated with ethylamine in DMF to afford N-ethyl-d-ribonamide 9a in quantitative yield. Bromination of amide 9a by the system SOBr2 in DMF or PPh3/CBr4 in pyridine led, after acetylation, to epoxide 7. However, treatment of amide 9a with acetyl bromide in dioxane followed by acetylation gave 2,3,4-tri-O-acetyl-5-bromo-5-deoxyl-N-ethyl-d-ribonamide 10a. Methanolysis of 10a, with sodium methoxide, afforded the N-ethyl-d-ribonolactam 11a in 51% overall yields. Using this method, N-butyl, N-hexyl, N-dodecyl, and N-benzyl-d-ribonolactams 11b-e were obtained in good yields (48-53%).  相似文献   

18.
The structure and barrier to internal rotation of 4-chlorophenol in the ground state and the electronically excited S1-state has been examined by rotationally resolved laser induced fluorescence spectroscopy of 4-35Cl-phenol, 4-37Cl-phenol, 4-35Cl-phenol-d1, and 4-37Cl-phenol-d1. The overlapping spectra have been assigned simultaneously using a genetic algorithm approach. The rotationally resolved spectrum of the electronic origin of 4-chlorophenol is comprised of two subbands, which are split by 60 MHz due to the internal rotation of the hydroxy group. The torsional barrier in the electronically excited state could be estimated to be 1400 cm−1, only about 250 cm−1 higher than in the ground state. The CCl bond lengths decreases by approximately 6 pm upon electronic excitation and the aromatic ring is distorted quinoidally.  相似文献   

19.
Ab initio UMP2 and UQCISD(T) calculations, with 6-311G** basis sets, were performed for the titled reactions. The results show that the reactions have two product channels: NH2+ HNCO?NH3+NCO (1) and NH2+HNCO?N2H3+CO (2), where reaction (1) is a hydrogen abstraction reaction via an H-bonded complex (HBC), lowering the energy by 32.48 kJ/mol relative to reactants. The calculated QCISD(T)//MP2(full) energy barrier is 29.04 kJ/mol, which is in excellent accordance with the experimental value of 29.09 kJ/mol. In the range of reaction temperature 2300–2700 K, transition theory rate constant for reaction (1) is 1.68×1011–3.29×1011 mL·mol-1·s-1, which is close to the experimental one of 5.0×1011mL·mol-1·s-1or less. However, reaction (2) is a stepwise reaction proceeding via two orientation modes,cis andtrans, and the energy barriers for the rate-control step at our best calculations are 92.79 kJ/mol (forcis-mode) and 147.43 kJ/mol (fortrans-mode), respectively, which is much higher than reaction (1). So reaction (1) is the main channel for the titled reaction.  相似文献   

20.
Ab initio SCF calculations with the STO -3G basis set have been performed to investigate substituent effects on the structures and stabilization energies of water:4-R-pyrimidine complexes, with R including CH3, NH2, OH, F, C2H3, CHO, and CN. Except for the cyclic water:4-aminopyrimidine complex hydrogen bonded at N3, these complexes have open structures stabilized by a nearly linear hydrogen bond formed through a nitrogen lone pair of electrons. When hydrogen bonding occurs at N3, the complexes may have planar or perpendicular conformations depending on the substituent, but when hydrogen bonding occurs at N1, the perpendicular is generally slightly preferred, and there is essentially free rotation of the 4-R-pyrimidine. Primary substituent effects alter the electronic environment at the nitrogens, and tend to make N3 a poorer site for hydrogen bonding than N1, primarily because of a stronger π electron-withdrawing effect at N3. However, the relative stabilities of complexes hydrogen bonded at N1 and N3 are also influenced by secondary substituent effects, which may be significant in stabilizing complexes bonded at N3. Substitutent effects on the structures and stabilization energies of the water:4-R-pyrimidine complexes are similar to substitutent effects in water:2-R-pyridine and water:4-R-pyrimidine complexes are similar to substitutent effects in water:2-R-pyridine and water:4-R-pyridine complexes. Configuration interaction calculations indicate that although absorption of energy by the pyrimidine ring destabilizes the water:4-R-pyrimidine complexes, these may still remain bound in the excited n → π* state. This is in contrast to the fate of open water:2-R-pyridine and water:4-R-pyridine complexes, which dissociate in this state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号