首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于Biot两相介质理论,采用一种高精度间接边界积分方程法(IBIEM)研究了饱和半空间中浅埋衬砌隧道在内部爆炸荷载作用下的瞬态弹性动力反应。通过典型算例,给出了爆炸荷载作用下隧道附近地表位移、衬砌动应力、围岩径向位移和衬砌表面孔隙水压的时程响应,并对比分析了饱和半空间和全空间中隧道动力响应的区别。研究表明:覆土层厚度对浅埋隧道-围岩整体动力响应特征具有明显影响;衬砌表面透水状态对爆炸荷载的时程响应的影响不显著;随半空间饱和介质孔隙率增加,围岩受隧道内部爆炸影响程度降低,衬砌承担的爆炸作用增大;当和直达波、衬砌内部反射波的峰值叠加作用时,半空间表面反射波对衬砌隧道拱顶附近响应影响显著,使得衬砌动应力幅值、径向位移相比深埋情况大幅度增加。  相似文献   

2.
A linear elastic full-space composed of an upper half-space, a lower half-space and a layer of three different transversely isotropic materials under an internal load is considered. The axes of symmetry of the different regions are assumed to be normal to the planar interfaces of the regions and are thus parallel. An arbitrary load in the frequency domain is allowed on a finite patch located at the interface of the upper half-space and the adjacent layer. By means of the complete displacement potentials, the displacements and stresses in the three regions are determined in Fourier–Hankel space in the form of line integrals. The solution can be degenerated to the solution for (i) a full-space under an arbitrary buried load, (ii) a half-space contain a layer bonded to the top of it under an arbitrary surface force, (iii) a half-space under an arbitrary surface load, (iv) a two layer half-space under an arbitrary force applied at the interface of two regions, (v) a half-space under an arbitrary buried force, (vi) a layer of finite thickness fixed at the bottom and under an arbitrary surface load, and (vii) a bi-material full-space under an arbitrary load at the interface of two materials. Examples of the displacements and stresses are obtained numerically and compared to existing solutions.  相似文献   

3.
The elastic displacement in an isotropic elastic half-space with free surface is calculated for a point tensor force which may arise from the seismic moment of seismic sources concentrated at an inner point of the half-space. The starting point of the calculation is the decomposition of the displacement by means of the Helmholtz potentials and a simplified version of the Grodskii-Neuber-Papkovitch procedure. The calculations are carried out by using generalized Poisson equations and in-plane Fourier transforms, which are convenient for treating boundary conditions. As a general result we compute the displacement in the isotropic elastic half-space with free surface caused by point forces with arbitrary structure and orientation, localized either beneath the surface (generalized Mindlin problem) or on the surface (generalized Boussinesq-Cerruti problems). The inverse Fourier transforms are carried out by means of Sommerfeld-type integrals. For forces buried in the half-space explicit results are given for the surface displacement, which may exhibit finite values at the origin, or at distances on the surface of the order of the depth of the source. The problem presented here may be viewed as an addition to the well-known static problems of elastic equilibrium of a half-space under the action of concentrated loads. The application of the method to similar problems and another approach to the starting point of the general solution are discussed.  相似文献   

4.
We consider the plane and axisymmetric problems about the contact interaction between an elastic plate and an elastic half-space loaded at infinity by a uniform tensile force parallel to the half-space boundary. We assume that the plate resists extension and does not resist bending. We determine the contact tangential stresses under the plate, the plate point displacements, and the strain distortion coefficient on the half-space surface.Similar problems were considered earlier by a different method in [1].  相似文献   

5.
Summary The axisymmetric response of an elastic half-space to the sudden application of radial shear surface loadings is investigated in this paper. Exact expressions for the surface displacement components are developed by means of integral transforms and complex functions. Numerical results are presented in diagrams to show the wave propagation on the surface due to the dynamic loadings, and the wave front singularities in the displacement components are particularly discussed. It is found that, for a given point on the half-space surface, Rayleigh surface waves issued from the nearest and farthest disturbances give rise to a jump or a two-sided logarithmic singularity in the displacement components.  相似文献   

6.
The existence of SH surface waves in a half-space homogeneous material (i.e. anti-plane shear wave motions which decay exponentially with the distance from the free surface) is shown to be possible within the framework of the generalized linear continuum theory of gradient elasticity with surface energy. As is well-known such waves cannot be predicted by the classical theory of linear elasticity for a homogeneous half-space, although there is experimental evidence supporting their existence. Indeed, this is a drawback of the classical theory which is only circumvented by modelling the half-space as a layered structure (Love waves) or as having non-homogeneous material properties. On the contrary, the present study reveals that SH surface waves may exist in a homogeneous half-space if the problem is analyzed by a continuum theory with appropriate microstructure. This theory, which was recently introduced by Vardoulakis and co-workers, assumes a strain-energy density expression containing, besides the classical terms, volume strain-gradient and surface-energy gradient terms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The three-dimensional, rapid sliding indentation of a deformable half-space by a rigid indentor of a flat elliptical base is treated in this paper. The response of the material that fills the half-space is assumed to be governed by coupled thermoelasticity. The indentor translates without friction on the half-space surface at a constant sub-Rayleigh speed and the problem is treated as a steady-state one. An exact solution is obtained that is based on a Green’s function approach, integral equations, and Galin’s theorem. A closed-form expression for the distributed contact pressure under the elliptical base of the indentor is derived. Representative numerical results are given illustrating the effects of the indentor velocity, indentor geometry, and parameters of the thermoelastic solid on the contact displacement. Since there is an analogy between the steady-state theories of thermoelasticity and poroelasticity, the present results carry over to the latter case directly.  相似文献   

8.
Surface Green function for incompressible, elastically isotropic half-space coupled with surface stress is derived by using double Fourier transform technique. The result indicates that the surface displacement induced by a force tangential to the surface is the same as the usual solution for elastic half-spaces where the effect of surface stress is ignored. However, the displacement caused by a force normal to the surface involves an additional parameter, i.e. the ratio of specific surface stress to shear modulus. The parameter has the dimension of length, and may provide a means to introduce an intrinsic length scale for some related problems regarding the surface of an elastic half-space. This is extremely true for soft elastic media with very low shear modulus, because in that situation the magnitude of the parameter is relatively large. As an illustrative example, the proposed Green function is adopted to analyze the interaction between two molecules with circular section adsorbed on the surface of a soft elastic half-space. It is shown that surface stress remarkably affects the pair interaction potential when the distance between the molecules is not larger than several times of the intrinsic length scale.  相似文献   

9.
The present work deals with torsional wave propagation in a linear gradient-elastic half-space. More specifically, we prove that torsional surface waves (i.e. waves with amplitudes exponentially decaying with distance from the free surface) do exist in a homogeneous gradient-elastic half-space. This finding is in contrast with the well-known result of the classical theory of linear elasticity that torsional surface waves do not exist in a homogeneous half-space. The weakness of the classical theory, at this point, is only circumvented by modeling the half-space as having material properties variable with depth (E. Meissner, Elastische Oberflachenwellen mit Dispersion in einem inhomogenen Medium, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich 66 (1921) 181–195; I. Vardoulakis, Torsional surface waves in inhomogeneous elastic media, Internat. J. Numer. Anal. Methods Geomech. 8 (1984) 287–296; G.A. Maugin, Shear horizontal surface acoustic waves on solids, in: D.F. Parker, G.A. Maugin (Eds.), Recent Developments in Surface Acoustic Waves, Springer Series on Wave Phenomena, vol. 7, Springer, Berlin, 1988, pp. 158–172), as a layered structure (Maugin, 1988; E. Reissner, Freie und erzwungene Torsionsschwingungen des elastischen Halbraumes, Ingenieur-Archiv 8 (1937) 229–245) or by considering couplings with electric and magnetic fields for different types of materials (Maugin, 1988). The theory employed here is the simplest possible version of Mindlin’s (R.D. Mindlin, Micro-structure in linear elasticity, Arch. Rat. Mech. Anal. 16 (1964) 51–78) generalized linear elasticity. A simple wave-propagation analysis based on Hankel transforms and complex-variable theory was done in order to determine the conditions for the existence of the torsional surface motions and to derive dispersion curves and cut-off frequencies. Also, we notice that, up to date, no other generalized linear continuum theory (including the integral-type non-local theory) has successfully been proposed to predict torsional surface waves in a homogeneous half-space.  相似文献   

10.
The solution of the problem of a rigid punch with a parabolic cross-section and flat base that is forced into an elastic piezoelectric ceramic half-space is derived in explicit form. The punch is somewhat displaced, being parallel to the isotropy plane that coincides with the boundary surface of the half-space. The symmetry axis coincides with the direction of the force lines of the field with the previous polarization. Formulas are derived to determine the stresses on the surface of the half-space under the punch and the components of the conjugate electric field for certain boundary conditions on the contact area. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 35, No. 11, pp. 20–26, November, 1999.  相似文献   

11.
Partial separation of variables and reexpansion of cylindrical and plane waves are used to find the solution describing the uniform motion of a load along a thin circular cylindrical shell in an elastic half-space with the free surface parallel to the axis of the shell. This is a model problem for studying the dynamics of tunnels and shallow-buried pipelines under transport loads. Dispersion curves for the cases of sliding and tight contact between the shell and the half-space are plotted and analyzed. The effect of the shell parameters on the stress–strain state of the half-space is examined  相似文献   

12.
An analytical solution to the axisymmetric problem on the action of a distributed load on an isotropic half-space when the load is given by a function dependent on the radial coordinate is obtained. The surface of the half-space is elastically fixed outside the circular domain of load application, the shear stresses are absent along the entire boundary, and the stresses vanish at infinity. At the boundary and inside the elastic half-space, the solutions are represented by the formulas for the stress tensor components and for the displacement vector components.  相似文献   

13.
This paper presents analytical Green’s function solutions for an isotropic elastic half-space subject to anti-plane shear deformation. The boundary of the half-space is modeled as a material surface, for which the Gurtin–Murdoch theory for surface elasticity is employed. By using Fourier cosine transform, analytical solutions for a point force applied both in the interior or on the boundary of the half-space are derived in terms of two particular integrals. Through simple numerical examples, it is shown that the surface elasticity has an important influence on the elastic field in the half-space. The present Green’s functions can be used in boundary element method analysis of more complicated problems.  相似文献   

14.
This paper investigates the disturbance due to harmonic time dependence plane and line load in pre-stressed elastic half-space. A normal force has been considered to act on the surface of a semi-infinite elastic solid. Stresses and displacements due to the load are evaluated. The results obtained here are in agreement with the classical Lamb's problem in elastic wave propagation when the half-space is supposed to be initially stress-free. The numerical results include the stress distribution and the displacement at the surface; further, the results for stresses are shown graphically.  相似文献   

15.
The propagator matrix method is developed to study the dynamic response of a multilayered poroelastic half-space to time-harmonic surface tractions. In a cylindrical coordinate system, a method of displacement potentials is applied first to decouple the Biot’s wave equations into four scalar Helmholtz equations, and then, general solutions to those equations are obtained. After that, the propagator matrix method and the vector surface harmonics are employed to derive the solutions for a multilayered poroelastic half-space subjected to surface tractions. It is known that the original propagator algorithm has the loss-of-precision problem when the waves become evanescent. At present, an orthogonalization procedure is inserted into the matrix propagation loop to avoid the numerical difficulty of the original propagator algorithm. Finally, a high-order adaptive integration method with continued fraction expansions for accelerating the convergence of the truncated integral is adopted to numerically evaluate the integral solutions expressed in terms of semi-infinite Hankel-type integrals with respect to horizontal wavenumber. Furthermore, to validate the present approach, the response of a uniform poroelastic half-space is examined using the formulation proposed in this article. It is shown that the numerical results computed with this approach agree well with those computed with the analytical solution of a uniform half-space.  相似文献   

16.
The process of seepage consolidation of elastic saturated half-space under the action of a normal load on its surface is investigated assuming both incompressibility of fluid and skeleton grains and independence of the total skeleton stresses on time. Analytic representations for the fluid pressure and the half-space surface settlement are found when the half-space is loaded by a concentrated force. The maximum settlement is also found for a uniform loading of the surface over the circle area.  相似文献   

17.
We theoretically study the existence conditions for Love waves in a layer with arbitrary thickness and arbitrary physical and mechanical properties on a regularly laminated half-space. Also we analyze the behavior of the dispersion curves depending on the physical and geometrical properties of the layer and the mechanical properties of the upper layer of the half-space. It is demonstrated that the behavior of the spectrum and the ranges of surface waves can efficiently be controlled by varying the thickness of the layer.Translated from Prikladnaya Mekhanika, Vol. 40, No. 9, pp. 131–136, September 2004.  相似文献   

18.
Summary The paper presents a study of time-harmonic vibration of a half-space possessing a shear modulus linearly increasing with depth. Completing the previous paper [1], where the time-harmonic vibration of an incompressible half-space has been considered, the problem is now solved for a compressible as well as an incompressible material. The half-space is subjected to a vertical or horizontal surface load. The solution is represented in terms of Fourier-Bessel integrals containing functions of depth coordinate that are expressed through confluent hypergeometric functions. Numerical results concerning surface displacements due to a point force are given for a wide range of frequency variations and degree of non-homogeneity. The results show that, as compared to the homogeneous case, non-homogeneity can considerably increase vibration amplitudes at large distances from the applied force. Received 19 August 1996; accepted for publication 16, December 1996  相似文献   

19.
A rigid indentor travels with a constant speed over the surface of an isotropic thermoelastic half-space. Friction exists between the indentor and half-space, and the latter is initially in equilibrium at a uniform temperature under a uniform normal pre-stress. This pre-stress, below but near yield, is assumed to produce deformations that dominate the additional deformations due to indentation. Thus, the process is treated as one of small deformations superposed upon (relatively) large. The governing equations for the superposed deformation are those of nonisotropic coupled thermoelasticity. A steady-state two-dimensional study uses robust asymptotic analytical solutions to reduce the associated mixed boundary value problem to a classical singular integral equation which can be solved analytically. The solutions show that the pre-stress-induced de facto nonisotropy alters the values of the rotational and dilatational wave and Rayleigh speeds in the half-space and, in the case of a compressive pre-stress, generates a second, lower, critical speed. In addition, pre-stress generates noncritical sliding speeds at which the friction-dependent integral equation eigenvalue changes sign. For purposes of illustration, expressions for the half-space surface temperature change and its average over the contact zone, the equations necessary to determine contact zone size and location, the resultant moment on the indentor, and the maximum compressive stress on the contact zone are presented for a parabolic indentor. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The article concerns the problem of bonded contact of a thin, flexible elliptical disk with a transversely isotropic half-space. Three different cases of loading have been considered: (a) the disk is loaded by a transverse force, whose line of action passes through the center of the disk and lies in the plane of the disk; (b) the disk is subjected to a rotation by a torque, whose axis is perpendicular to the surface of the half-space; (c) the half-space with the bonded disk is under uniform stress field at infinity. The problem corresponding to all three cases is reduced, in a unified manner, to a set of coupled two-dimensional integral equations. Closed-form solutions for these equations have been obtained by using Galins theorem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号