首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Abstract  

The stability constant of the dibenzo-18-crown-6·H3O+ cationic complex species dissolved in nitrobenzene saturated with water has been determined from extraction experiments in the two-phase water–nitrobenzene system and from γ-activity measurements. Various structures of protonated dibenzo-18-crown-6 are discussed.  相似文献   

2.

Abstract  

Extraction experiments in the two-phase water/nitrobenzene system and γ-activity measurements were used to determine the stability constant of the dibenzo-18-crown-6·Ag+ complex species in nitrobenzene saturated with water. Furthermore, the structure of the resulting complex was derived by means of theoretical calculations at the density functional level.  相似文献   

3.
Abstract  The stability constant of the dibenzo-18-crown-6·H3O+ cationic complex species dissolved in nitrobenzene saturated with water has been determined from extraction experiments in the two-phase water–nitrobenzene system and from γ-activity measurements. Various structures of protonated dibenzo-18-crown-6 are discussed. Graphical abstract     相似文献   

4.
From extraction experiments with 22Na tracer, the exchange extraction constants corresponding to the NH4 +(aq) + NaL+ (nb)NH4L+(nb) + Na+ (aq) equilibrium taking place in the two-phase water-nitrobenzene system (L = 18-crown-6, dicyclohexyl-18-crown-6, dibenzo-18-crown-6 and dibenzo-24-crown-8; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the stability constants of the NH4L+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the order dibenzo-24-crown-8 (DB24C8) < dibenzo-18-crown-6 (DB18C6) < dicyclohexyl-18-crown-6 (DCH18C6) < 18-crown-6 (18C6).  相似文献   

5.
1.  Using a conductometric method in a mixed THF-CHCl3 solvent, the complex-forming abilities of bis(ortho-(diethoxyphosphinylmethoxy)phenyl) ethers of oligoethylene glycols towards alkali metal cations have been studied. Complex-forming ability towards Li+, Na+, K+, and Rb+ cations depends very much on the length of the polyether chain. In the case of the Cs+ cation the effectiveness increases monotonically with increase in the number of ethylene glycol units.
2.  The complex-forming abilities of the higher members of the series of podands studied — bis(ortho-(diethoxyphosphinylmethoxy)phenyl) ethers of tetraethylene glycol and pentaethylene glycol — towards K+, Rb+, and Cs+ cations are comparable with, and in some cases exceed, those for 18-crown-6 and dibenzo-18-crown-6.
3.  The enhanced effectiveness of the present class of podands (in comparison with podands with ortho-diethoxyphosphinylphenyl terminal groups) towards alkali metal cations of greater radius (K+, Rb+, Cs+) is explained by the participation of the O atom located at the -position to the phosphoryl group in the coordination.
For previous communications, see [1, 2].  相似文献   

6.
The predominant participation of anions of sorbed electrolytes in electrical charge transfer in polymers was demonstrated based on measurement of the transport numbers of Li+, Na+, K+, Rb+, Cs+, Tl+, and NO3 ions through homogeneous polymer membranes containing dibenzo-18-crown-6 or dibenzo-24-crown-8. The coordination reaction of the cations with the crown ethers in the polymer phase is the cause of the decrease in the proportion of cations in electrical charge transfer.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 310–314, February, 1990.  相似文献   

7.
Selective separation of a model mixture of Cs+ and Cu2+ ions through a liquid membrane based on a 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide hydrophobic ionic liquid (IL) in the presence of chelating compounds under an electric field gradient has been studied. Modifying the hydrophobic ionic liquid membrane with a crown ether (18-crown-6 (18C6) or dibenzo-18-crown-6 (DB18C6)) provides selective separation of cesium and copper(II) ions.  相似文献   

8.
The products of the reactions between potassium hexachloroplatinate {K2PtCl6} and 18-crown-6 or dibenzo-18-crown-6 in acetonitrile were studied. Pure crystalline compounds [2K·2(18-crown-6)· 2CH3CN]2+·[PtCl6]2-·2H2O, [2K·dibenzo-18-crown-6·CH3CN]2 +·[PtCl6]2 -, and [2K·dibenzo-18-crown-6·CH3CN]2 +·[Pt2Cl10]2 - were obtained. Physicochemical properties of these compounds were studied, and their near- and far-IR IR spectra and thermogravimetric curves were considered. The composition of the complexes is determined by metal:ligand molar ratio and crown ether nature. It was found that acetonitrile is coordinated via the nitrogen atom.  相似文献   

9.
From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Cs+ (aq) + A (aq) + 1(nb) \rightleftarrows \rightleftarrows 1·Cs+(nb) + A(nb) taking place in the two-phase water–nitrobenzene system (A = picrate, 1 = dibenzo-30-crown-10; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (1·Cs+, A) = 4.0 ± 0.1. Further, the stability constant of the 1·Cs+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log β nb (1·Cs+) = 5.9 ± 0.1. Finally, by using quantum–mechanical DFT calculations, the most probable structure of the resulting cationic complex species 1·Cs+ was derived.  相似文献   

10.
Complexation of the cesium ion with the macrocyclic ligands: dibenzo-24-crown-8 (DB24C8), dicyclohexano-24-crown-8 (DC24C8) and dibenzo-30-crown-10 (DB30C10) was studied in binary acetonitrile-nitromethane mixtures by 133Cs NMR spectroscopy. The 133Cs chemical shift data indicated that the cesium cation forms 1:1 cation:ligand complexes with DB24C8 and DB30C10 but forms 2:1, 1:1 and 1:2 cation:ligand complexes with DC24C8 in acetonitrile-nitromethane mixtures. The formation constants of the complexes were calculated from the computer fitting of the chemical shift mole ratio data. The results show that the complex formation constants with the Cs+ cation vary in the order DC24C8>DB24C8∼DB30C10. It was found that the stability of the resulting complexes increases with increasing nitromethane concentration in the solvent mixture.  相似文献   

11.
New mixed complex compound aqua(dibenzo-18-crown-6)potassium (dibenzo-18-crown-6)(tetrachlorocuprato(II)-Cl)potassium, [K(CuCl4)(Db18C6)]? · [K(Db18C6)(H2O)]+, is synthesized and its crystal structure is studied by the method of x-ray structural analysis. The structure includes two independent complex ions, both of guest-host type: two cations K+ are located in the respective cavities of the Db18C6 crown-ligand (one in each) and each is coordinated by all its six O atoms and one Cl atom of the anion-ligand [CuCl4]2? or O atom of the ligand water molecule. Coordination of these two K+ cations is completed to hexagonal pyramidal one by formation by each of unusually weak coordination bond K+π(\(C\dddot - C\)) with two C atoms of respective benzene ring in the neighboring Db18C6 ligand. In this crystal structure the complex anions and cations form dual infinite chains via these coordination bonds and interionic O-H?Cl hydrogen bonds.  相似文献   

12.
Stability constants K ML for the 1:1 complexes of Na+, K+, Rb+, and Cs+ with dibenzo-24-crown-8 (DB24C8) and dibenzo-18-crown-6 (DB18C6) in water have been determined by a capillary electrophoretic technique at 25°C. The K ML sequence is Na+ < K+ < Rb+ < Cs+ for DB24C8 and Na+ < K+ > Rb+ > Cs+ for DB18C6. Compared with DB18C6, DB24C8 exhibits higher selectivity for K+ over Na+, but lower selectivity for K+, Rb+, and Cs+. To evaluate the solvation of the complexes in water, their transfer activity coefficients sH2O between polar nonaqueous solvents and water have been calculated. The sH2O values provide the following information: interactions with water of the metal ions and of the crown-ether oxygens are greatly reduced upon complexation and the complexes undergo hydrophobic hydration in water; the character of each alkali metal ion in solvation is more effectively masked by DB24C8 than by DB18C6, because of the larger and more flexible ring structure of DB24C8. Solvent effects on the complex stabilities are discussed on the basis of the sH2O values.  相似文献   

13.
The electrochemical behaviour of pyridoxine hydrochloride (pyridoxine HCl) at the plain carbon paste electrode and the electrode modified with oxa crown ether has been studied using voltammetric and impedance measurements. The macrocycles used as modifiers were 18-crown-6, dibenzo-18-crown-6 (DB18C6), dicyclohexano-18-crown-6 and dibenzo-24-crown-8, out of which DB18C6 gave better response for pyridoxine HCl. Tris buffer (pH 10.3) was chosen as an appropriate medium among the several supporting electrolytes of varying pH studied. The characterization of the DB18C6-modified electrode (CME-DB18C6) using kinetic parameters such as number of electrons (n) and electron transfer coefficient (α) is studied by cyclic voltammetry. Electrochemical impedance spectroscopic measurements obtained confirm the current enhancement over the modified electrode. Analytical applications of this electrode have been studied for the determination of pyridoxine HCl. A sensitive linear working range of 0.6 to 100 μg cm−3 with a detection limit of 0.4 μg cm−3 by differential pulse voltammetry was observed for pyridoxine HCl on CME-DB18C6. However, on decreasing the scan rate to 5 mV s−1, the detection limit lowered to 0.2 μg cm−3. Interference from some vitamins like thiamine hydrochloride, riboflavin, nicotinamide, para-aminobenzoic acid, cyanocobalamin, folic acid and d-biotin and amino acid l-tryptophan was studied, and simultaneously, riboflavin, thiamine hydrochloride and pyridoxine HCl were determined over the modified electrode, CME-DB18C6. The modified electrode is successfully used for the determination of pyridoxine HCl in multivitamin pharmaceutical preparations.  相似文献   

14.
Ion-pair extraction behaviour of plutonium (IV) from varying concentrations of HCl solution was studied employing crown ethers (benzo-l5-crown-5 (B15C5), 18-crown-6, (18C6), dibenzo-18-crown-6 (DB18C6), dicyclohexano-18-crown-6, (DC18C6), dibenzo-24-crown-8 (DB24C8) and dicyclohexano-24-crown-8 (DCH24C8)) in nitrobenzene as the extractant. Ammonium metavanidate was used as the holding oxidant in the aqueous phase and the conditions necessary for the quantitative extraction of the tetravalent ion were found. The co-extraction of species of the type [HL+].[HPu(Cl) 6 ] and [HL+]2·[Pu(Cl) 6 2– ] as ion-pairs (where L represents the crown ether) is suggested.  相似文献   

15.
Cation fluxes from binary mixtures of either Na+, Cs+ or Sr2+ with other alkali metal cations, alkaline earth metal cations, and Pb2+ through a H2OCHCl3H2O bulk liquid membrane system containing one of several macrocyclic carriers have been determined Nitrate salts were used in all cases. The most selective transport of Na+ over all other cations studied was found with the carrier cryptand [2.2.1]. Selective transport of Na+ relative to Li+, Cs+ and the alkaline earth cations was found with cryptand [2.2.2B] and cryptand [2.2.2D]. The ligands 21-crown-7 and dibenzo-24-crown-8 showed selective transport of Cs+ over the second cation in all cases. Several macrocycles showed selectivity for Sr2+ over the second cation with the macrocycle 1,10-diaza-18-crown-6 showing the highest selectivity for this cation of all ligands studied. Relative fluxes from binary cation mixtures are rationalized in terms of macrocycle cavity size, donor atom type and ring substituents.  相似文献   

16.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)+NaL+(nb)⇄ML+(nb)+Na+(aq) taking place in the two-phase water-nitrobenzene system (M+=Li+, K+, Rb+, Cs+; L=dibenzo-24-crown-8; aq=aqueous phase, nb=nitrobenzene phase) were evaluated. Further, the stability constants of the ML+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the Cs+Rb+L+Na+ order.  相似文献   

17.
New ion-selective electrodes for potassium were developed and tested employing 18-crown-6-ether, dibenzo-18-crown-6-ether, and 4′,4″(5″)-di-tert-butyldibenzo-18-crown-6-ether ionophores in PVC membranes with a polyaniline solid contact between the membranes and the Pt substrate. We compared the response characteristics of the solid-contact electrodes (SCEs) based on these ionophores and various plasticizers. Among the three ionophores, 4′,4″(5″)-di-tert-butyldibenzo-18-crown-6-ether-based SCE produced the best results exhibiting a high reproducibility with negligible drifts in the standard potential with a response slope (RS) of 58.2 mV/decade: the detection limit (DL) of the potassium ion was 10−5.80 M with linearity over five decades. This is a significant improvement for the response slope and detection limit compared to SCEs with valinomycin, 2,3-naphtho-15-crown-ether, and dibenzo-15-crown-5-ether ionophore, which showed 53–56 mV/decade of RS and 10−5.3 M of DL. The response slope, detection limit, and selectivity were compared with other K+ ISEs reported until present. Finally, the new SCE was applied to determine potassium ions in artificial human serum with satisfactory results. However, the detection limit for the artificial serum was slightly diminished yielding a value of 10−5.19 M (6.5 × 10−3 mM) which is still good. Electrodes with polypyrrole in place of polyaniline exhibited comparable results. The text was submitted by the authors in English.  相似文献   

18.
The complexation reactions between Tl+ ion and dibenzo-30-crown-10 (DB30C10), dibenzo-24-crown-8 (DB24C8), dibenzo-21-crown-7 (DB21C7), and aza-18-crown-6 (A18C6) were studied in different dimethylformamide-acetonitrile mixtures at various temperatures. The formation constants of the resulting 1 : 1 complexes were determined from the molar conductance-mole ratio data and found to vary in the order A18C6 > DB30C10 > DB21C7 > DB24C8. The enthalpy and entropy of complexation were determined from the temperature dependence of the formation constants.  相似文献   

19.
The crystal structures of 13 compounds of the form M[Al2Me6X]·aromatic and related have been examined in order to learn about the M+...aromatic approach. Four types of interactions have been discerned: (1) metal...aromatic, (2) metal...aromatic...metal, (3) aromatic...metal...aromatic, and (4) no metal...aromatic contact. It was found that the closest K+...C(aromatic) and Cs+...C(aromatic) separations are essentially equal after a correction for the difference in metal radii. The strength of the K+...aromatic attraction was found to be sufficient to move the K+ ion 0.3 Å out of the plane of the crown ether in two complexes of dibenzo-18-crown-6.  相似文献   

20.
From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium \textCs + ( \textaq ) + \textA - ( \textaq ) + 1( \textnb )\underset \rightleftharpoons 1·\textCs + ( \textnb ) + \textA - ( \textnb ) {\text{Cs}}^{ + } \left( {\text{aq}} \right) + {\text{A}}^{ - } \left( {\text{aq}} \right) + {\mathbf{1}}\left( {\text{nb}} \right)\underset {} \rightleftharpoons {\mathbf{1}}\cdot{\text{Cs}}^{ + } \left( {\text{nb}} \right) + {\text{A}}^{ - } \left( {\text{nb}} \right) taking place in the two-phase water-nitrobenzene system (A = picrate, 1 = dibenzo-21-crown-7; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (1·Cs+, A) = 4.4 ± 0.1. Further, the stability constant of the 1·Cs+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb (1·Cs+) = 6.3 ± 0.1. Finally, by using quantum mechanical DFT calculations, the most probable structure of the resulting cationic complex species 1·Cs+ was solved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号