首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The rare earth-rich cadmium compounds RE 4 TCd (RE = Y, La–Nd, Sm, and Gd–Tm, Lu; T = Co, Ru, and Rh) were prepared from the elements in sealed tantalum ampoules in an induction furnace. All samples were characterized by X-ray powder diffraction. The structures of Y4RuCd (a = 1362.5(1) pm), La4RuCd (a = 1415.9(1) pm), Gd4RuCd (a = 1368.8(2) pm), La4CoCd (a = 1417.9(4) pm), Gd4CoCd (a = 1356.1(1) pm), and Gd4RhCd (a = 1368.7(1) pm) were refined from single crystal X-ray diffractometer data. The RE 4 TCd compounds crystallize with the cubic Gd4RhIn type structure, space group F ${\bar 4}The rare earth-rich cadmium compounds RE 4 TCd (RE = Y, La–Nd, Sm, and Gd–Tm, Lu; T = Co, Ru, and Rh) were prepared from the elements in sealed tantalum ampoules in an induction furnace. All samples were characterized by X-ray powder diffraction. The structures of Y4RuCd (a = 1362.5(1) pm), La4RuCd (a = 1415.9(1) pm), Gd4RuCd (a = 1368.8(2) pm), La4CoCd (a = 1417.9(4) pm), Gd4CoCd (a = 1356.1(1) pm), and Gd4RhCd (a = 1368.7(1) pm) were refined from single crystal X-ray diffractometer data. The RE 4 TCd compounds crystallize with the cubic Gd4RhIn type structure, space group F 3m. The transition metal atoms have tricapped trigonal prismatic rare earth coordination. The trigonal prisms are condensed via common edges, forming a rigid three-dimensional network with adamantane symmetry. Voids in these networks are filled by Cd4 tetrahedra (304 pm Cd–Cd in Gd4CoCd) and polyhedra of the RE1 atoms. The crystal chemical peculiarities are briefly discussed. Correspondence: Rainer P?ttgen, Institut für Anorganische und Analytische Chemie, Westf?lische Wilhelms-Universit?t Münster, Correnstrasse 30, 48149 Münster, Germany.  相似文献   

2.
The quaternary germanides RE3TRh4Ge4 (RE = Ce, Pr, Nd; T = Nb, Ta) were synthesized from the elements by arc‐melting and subsequent annealing in a muffle furnace. The structure of Ce3TaRh4Ge4 was refined from single‐crystal X‐ray diffractometer data: new type, Pbam, a = 719.9(2), b = 1495.0(3), c = 431.61(8), wR2 = 0.0678, 1004 F2 values, and 40 variables. Isotypy of the remaining phases was evident from X‐ray powder patterns. Ce3TaRh4Ge4 is a new superstructure variant of the aristotype AlB2 with an ordering of cerium and tantalum on the aluminum site, whereas the honey‐comb network is built up by a 1:1 ordering of rhodium and germanium. This crystal‐chemical relationship is discussed based on a group‐subgroup scheme. The distinctly different size of tantalum and cerium leads to a pronounced puckering of the [Rh4Ge4] network, which shows the shortest interatomic distances (253–271 pm Rh–Ge) within the Ce3TaRh4Ge4 structure. Another remarkable structural feature concerns the tantalum coordination with six shorter Ta–Rh bonds (265–266 pm) and six longer Ta–Ge bonds (294–295 pm). The [Rh4Ge4] network fully separates the tantalum and cerium atoms (Ce–Ce > 387 pm, Ta–Ta > 431 pm, and Ce–Ta > 359 pm). The electronic density of states DOS from DFT calculations show metallic behavior with large contributions of localized Ce 4f as well as itinerant ones from all constituents at the Fermi level but no significant magnetic polarization on Ce could be identified. The bonding characteristics described based on overlap populations illustrate further the crystal chemistry observations of the different coordination of Ce1 and Ce2 in Ce3TaRh4Ge4. The Rh–Ge interactions within the network are highlighted as dominant. The bonding magnitudes follow the interatomic distances and identify differences of Ta bonding vs. Ce1/Ce2 bonding with the Rh and Ge substructures.  相似文献   

3.

Abstract  

The palladium-rich cadmium compounds La6Pd13Cd4 and Ce6Pd13Cd4 were synthesized by induction melting the elements in sealed tantalum ampoules and subsequent annealing. They were characterized by X-ray powder and single-crystal diffraction: Na16Ba6N type, Im[`3] mIm\overline{3} m, a = 988.12(9) pm, wR2 = 0.0463, 225 F 2 values, and 12 variables for La6Pd13Cd4, and a = 982.1(2) pm, wR2 = 0.0521, 215 F 2 values, and 12 variables for Ce6Pd13Cd4. The striking structural motifs are palladium-centred La6 and Ce6 octahedra, which are packed in a bcc fashion. Further palladium and cadmium atoms built up three-dimensional [Pd3Cd] networks in which the La6Pd and Ce6Pd octahedra are embedded. Chemical bonding analyses show that the dominant interaction occurs within the palladium-centred RE 6 octahedra, while weaker bonding exists between them.  相似文献   

4.
The intermetallic cerium compounds Ce3-Pd3Bi4, CePdBi, and CePd2Zn3 were synthesized from the elements in sealed tantalum ampoules in an induction furnace. The compounds were characterized by X-ray powder and single crystal diffraction: CeCo3B2 type (ordered version of CaCu5), P6/mmm, a = 538.4(4), c = 427.7(4) pm, wR2 = 0.0540, 115 F 2 values, 9 variables for CePd2Zn3 and Y3Au3Sb4 type, I [`4]{\bar 4} 3d, a = 1005.2(2) pm, w R2 = 0.0402, 264 F 2 values, 9 variables for Ce3Pd3Bi4, and MgAgAs type, a = 681.8(1) pm for CePdBi. The bismuthide structures are build up from three-dimensional networks of corner-sharing PdBi4 tetrahedra with Pd–Bi distances of 281 (Ce3Pd3Bi4) and 296 pm (CePdBi), respectively. The cerium atoms are located in larger voids of coordination number 12 (Ce3Pd3Bi4) and 10 (CePdBi). In CePd2Zn3 the cerium atoms fill larger channels within the three-dimensional [Pd2Zn3] network with 18 (6 Pd + 12 Zn) nearest neighbors. The three compounds contain stable trivalent cerium with experimental magnetic moments of μeff = 2.70(2), 2.48(1), and 2.49(1) μB/Ce atom for CePd2Zn3, Ce3Pd3Bi4, and CePdBi, respectively. Susceptibility and specific heat data gave no hint for magnetic ordering down to 2.1 K.  相似文献   

5.
Binary and ternary cerium-gallium germanides have been synthesized by arc melting and the existence of five binary cerium-gallium compounds and four ternary phases Ce2Ge5.4Ga1.6, Ce4Ge7Ga4, CeGeGa and Ce5GeGa2 has been confirmed from X-ray powder diffraction analysis. Low temperature magnetization and electrical resistivity data in the temperature range from 2 to 300 K reveal the absence of magnetic ordering except for CeGa, which was found to be antiferromagnetic below TN = 7 K. Effective paramagnetic moments in all cases are close to a tripositive behaviour of cerium with a small tendency for the effective moments in the binary cerium gallides to move towards smaller values when the gallium content decreases in close correspondence with the interatomic cerium distances.  相似文献   

6.
The properties of fine crystalline corundum doped with cerium (α-Al2O3: Ce3+) during synthesis in a supercritical fluid have been studied. The synthesis of corundum has been carried out by the thermal treatment of hydrargillite, Al(OH)3, at T = 415°C and {ie290-1} MPa in reaction media that contained from 0.001 to 0.25 wt % of cerium. Cerium ions are incorporated into the boehmite lattice during the transformation of hydrargillite into boehmite, which forms fine monocrystals of the doped corundum with a size from 20 to 50 μm. The size of the corundum crystals increases with increasing pressure and increasing concentration of cerium. The synthesized α-Al2O3: Ce3+ reveals a luminescent band in the UV region at 352 nm and a blue band at 421 nm. The intensity of the cerium ion luminescence in corundum increases with an increase in the water fluid pressure during synthesis. The follow-up annealing of α-Al2O3: Ce3+ at 1400°C in a vacuum leads to a decrease in the luminescence. It has been concluded that spectrally active complex structures that include cerium ions, oxygen vacancies, and hydroxyl groups are produced in the media of a supercritical water fluid upon the synthesis of boehmite and corundum. Exposure to high temperatures causes their transformation.  相似文献   

7.
Compounds Ce2TiO5, Ce2Ti2O7, and Ce4Ti9O24 were prepared by heating appropriate mixtures of solids containing Ce4+ and Ti3+ or Ti which were placed in a platinum-silica-ampoule combination at T = 1250°C (3d) under vacuum. The new compounds were characterized by powder patterns. We obtained Ce2TiO5 which is isotypic to La2TiO5 and crystallizes in the Y2TiO5-type (space group Pnma) with a = 10.877(6) Å, b = 3.893(1) Å, c = 11.389(8) Å, Z = 4. Ce2Ti2O7 is isotypic to La2Ti2O7 and crystallizes in the monoclinic Ca2Nb2O7 type (space group P 21) with a = 7.776(6) Å, b = 5.515(4) Å, c = 12.999(6) Å, β = 98.36(5), Z = 4. The compound Ce4Ti9O24 crystallizes orthorhombic with a = 14.082(4) Å, b = 35.419(8) Å, c = 14.516(4) Å, Z = 16. The new cerium titanate Ce4Ti9O24 is isotypic to Nd4Ti9O24 (space group Fddd (No. 70)) which represents a novel type of structure.  相似文献   

8.
Two new series of tetracyanamidogermanates were prepared by solid‐state reaction of appropriate amounts of REF3 (RE = rare earth), A2[GeF6] (A = alkaline), and Li2(CN2) in evacuated silica tubes. Powder X‐ray diffraction patterns of crystalline samples of KRE[Ge(CN2)4] and CsRE[Ge(CN2)4] were indexed isotypically to KRE[Si(CN2)4] and RbRE[Ge(CN2)4], respectively. Luminescence properties of Ce3+, Eu3+, and Tb3+ doped compounds and non‐linear optical properties (NLO) of KRE[Ge(CN2)4] are reported.  相似文献   

9.
The rare earth borides RERu4B4 (RE = Ce, Pr, Nd, Sm) were synthesized from the elements by arc‐melting and their crystal structures were studied on the basis of X‐ray powder and single‐crystal diffraction: LuRu4B4 type, I41/acd, a = 747.47(8), c = 1506.4(3) pm, wR2 = 0.0579, 362 F2 values for CeRu4B4, a = 751.3(2), c = 1507.1(5) pm, wR2 = 0.0724, 471 F2 values for PrRu4B4, a = 751.0(2), c = 1506.9(6) pm, wR2 = 0.0598, 384 F2 values for NdRu4B4, and a = 749.1(1), c = 1506.0(3) pm, wR2 = 0.0759, 413 F2 values for SmRu4B4, with 18 variables per refinement. Striking structural motifs of the RERu4B4 structures are Ru4 tetrahedra and B2 dumbbells with Ru–Ru and B–B distances of 271 and 180 pm in CeRu4B4. The intermediate valence of cerium leads to shorter Ce–Ru distances of 292 pm. CeRu4B4 behaves like a Pauli paramagnet with a small room temperature susceptibility of 1.5 × 10–4 emu · mol–1. Chemical bonding analyses shows substantial Ru–B and B–B bonding within the [Ru4B4] substructure.  相似文献   

10.
Syntheses, crystal structures and thermal behavior of two new hydrated cerium(III) sulfates are reported, Ce2(SO4)3·4H2O ( I ) and β‐Ce2(SO4)3·8H2O ( II ), both forming three‐dimensional networks. Compound I crystallizes in the space group P21/n. There are two non‐equivalent cerium atoms in the structure of I , one nine‐ and one ten‐fold coordinated to oxygen atoms. The cerium polyhedra are edge sharing, forming helically propagating chains, held together by sulfate groups. The structure is compact, all the sulfate groups are edge‐sharing with cerium polyhedra and one third of the oxygen atoms, belonging to sulfate groups, are in the S–Oμ3–Ce2 bonding mode. Compound II constitutes a new structure type among the octahydrated rare‐earth sulfates which belongs to the space group Pn. Each cerium atom is in contact with nine oxygen atoms, these belong to four water molecules, three corner sharing and one edge sharing sulfate groups. The crystal structure is built up by layers of [Ce(H2O)4(SO4)]nn+ held together by doubly edge sharing sulfate groups. The dehydration of II is a three step process, forming Ce2(SO4)3·5H2O, Ce2(SO4)3·4H2O and Ce2(SO4)3, respectively. During the oxidative decomposition of the anhydrous form, Ce2(SO4)3, into the final product CeO2, small amount of CeO(SO4) as an intermediate species was detected.  相似文献   

11.

Abstract  

The rhodium-rich phosphides RERh6P4 (RE = Sc, Yb, Lu) were synthesized from the constituent elements in bismuth fluxes and their structures were refined from X-ray single-crystal diffractometer data: P3, a = 6.968(2), c = 3.666(2) ?, wR (F 2) = 0.0481, 895 F 2 for ScRh6P4; a = 6.971(1), c = 3.673(1) ?, wR (F 2) = 0.0614, 700 F 2 for YbRh6P4; a = 6.971(2), c = 3.682(1) ?, wR (F 2) = 0.0828, 722 F 2 for LuRh6P4 with 37 variables per refinement. All three crystals are twinned. The twinning and the structural relationship with the aristotype LiCo6P4, space group P[`6]m2P\bar 6m2 are discussed on the basis of a group–subgroup scheme. The RERh6P4 phosphides belong to the large number of metal-rich compounds with a metal-to-phosphorus ratio near 2:1. The isolated phosphorus atoms have trigonal prismatic metal coordination by RE and Rh atoms. The high rhodium content leads to a pronounced rhodium substructure (278–293 pm Rh–Rh in ScRh6P4). From a geometrical point of view, the RERh6P4 structures can be viewed as intergrowth variants of slightly distorted ThCr2Si2-related slabs as realized for KRh2P2.  相似文献   

12.
New members of the RuSr2(RE2?x, Cex)Cu2O10 family of magnetically ordered phases have been synthesized under high pressure / high temperature conditions for RE = Y (x = 0.5, 0.7) and Dy (x = 0.5). All compounds show tetragonal symmetry with cell parameters a ≈ 3.82 Å and c ≈ 28.4 Å. Magnetic susceptibility vs temperature measurements show ferromagnetic behaviour of these compounds with TM = 120–140 K, depending on Ce content. These compounds are semiconducting and tend to transform into insulator, by increasing Ce content, as observed by the temperature dependence of the resistance.  相似文献   

13.
New intermetallic rare earth compounds REAuCd (RE = Y, La–Nd, Sm–Yb) and RE2Au2Cd (RE = La, Pr, Nd, Sm) were prepared by reaction of the elements in sealed tantalum tubes in a high‐frequency furnace. The compounds were investigated by X‐ray diffraction both on powders and single crystals. The equiatomic REAuCd compounds with RE = Y, La–Nd, Sm, and Gd–Tm adopt the ZrNiAl type structure with space group P62m. Single crystal X‐ray data yielded a = 786.2(2), c = 415.9(1) pm, wR2 = 0.0337, 402 F2 values for LaAuCd and a = 782.91(9), c = 410.01(5) pm, wR2 = 0.0653, 395 F2 values for CeAuCd with 14 parameters for each refinement. Geometrical motifs in CeAuCd are two types of gold centered tricapped trigonal prisms: [Au1Cd3Ce6] and [Au2Cd6Ce3]. The gold and cadmium atoms form a three‐dimensional [AuCd] polyanion in which the cerium atoms fill distorted hexagonal channels. EuAuCd and YbAuCd crystallize with a TiNiSi type structure, space group Pnma: a = 755.2(1), b = 450.59(5), c = 878.6(1) pm, wR2 = 0.0904, 500 F2 values for EuAuCd, and a = 731.64(3), b = 432.94(2), c = 875.80(4) pm, wR2 = 0.1192, 457 F2 values for YbAuCd with 20 parameters for each refinement. In these structures the europium(ytterbium) and cadmium atoms form zig‐zag chains of egde‐ and face‐sharing trigonal prisms which are centered by the gold atoms. Also in EuAuCd and YbAuCd a three‐dimensional [AuCd] polyanion occurs in which the europium(ytterbium) atoms are embedded. Europium and ytterbium are divalent in EuAuCd and YbAuCd. Susceptibility measurements show Pauli paramagnetism for YbAuCd and Curie‐Weiss behavior above 100 K for EuAuCd with an experimental magnetic moment of 7.86(6) μB/Eu. Ferromagnetic ordering is detected at 28 K. The saturation magnetic moment is 7.1(1) μB/Eu at 1.9 K. 151Eu Mössbauer spectra show an isomer shift of –9.2(2) mm/s and full magnetic hyperfine field splitting at 4.2 K with an internal hyperfine field of 19.5(4) T at the europium nuclei. The RE2Au2Cd compounds crystallize with the Mo2FeB2 structure, a ternary ordered version of the U3Si2 type. These structures may be considered as an intergrowth of distorted CsCl and AlB2 related slabs of compositions RECd and REAu2. Chemical bonding in REAuCd and RE2Au2Cd is briefly discussed.  相似文献   

14.
Phase relations in the ternary system Ce–Pd–Si have been established for the isothermal section at 800 °C based on X-ray powder diffraction and EMPA techniques on about 130 alloys, which were prepared by arc-melting under argon or powder reaction sintering. Eighteen ternary compounds have been observed to participate in the phase equilibria at 800 °C. Atom order was determined by direct methods from X-ray single-crystal counter data for the crystal structures of τ8—Ce3Pd4Si4 (U3Ni4Si4-type, Immm; a=0.41618(1), b=0.42640(1), c=2.45744(7) nm), τ16—Ce2Pd14Si (own structure type, P4/nmm; a=0.88832(2), c=0.69600(2) nm) and also for τ18—CePd1−xSix (x=0.07; FeB-type, Pnma; a=0.74422(5), b=0.45548(3), c=0.58569(4) nm). Rietveld refinements established the atom arrangement in the structures of τ5—Ce3PdSi3 (Ba3Al2Ge2-type, Immm; a=0.41207(1), b=0.43026(1), c=1.84069(4) nm) and τ13—Ce3−xPd20+xSi6 (0≤x≤1, Co20Al3B6-type, Fmm; a=1.21527(2) nm). The ternary compound Ce2Pd3Si3 (structure-type Ce2Rh1.35Ge4.65, Pmmn; a=0.42040(1), b=0.42247(1), c=1.72444(3) nm) was detected as a high-temperature compound, however, does not participate in the equilibria at 800 °C. Phase equilibria in Ce–Pd–Si are characterized by the absence of cerium solubility in palladium silicides. Mutual solubility among cerium silicides and cerium–palladium compounds are significant whereby random substitution of the almost equally sized atom species palladium and silicon is reflected in extended homogeneous regions at constant Ce-content such as for τ2—Ce(PdxSi1−x)2 (AlB2-derivative type), τ6—Ce(PdxSi1−x)2 (ThSi2-type) and τ7—CePd2−xSi2+x. The crystal structures of compounds τ4—Ce~8Pd~46Si~46, τ12—Ce~29Pd~49Si~22, τ15—Ce~22Pd~67Si~11, τ17—Ce~5Pd~77Si~18 and τ18—CePd1−xSix (x~0.1) are still unknown.  相似文献   

15.
Polycrystalline, close-packed, homogeneous nanostructured ceria thin films were prepared by sol–gel process via dip-coating technique on soda-lime glass and (100)-oriented Si substrates. To produce the films, a sol was prepared using, as precursor, a home made cerium sec-butoxide dissolved in secondary butanol. The chemical composition, the microstructural/morphological characteristics and the optical properties of the coatings were investigated in detail. The experimental results clearly demonstrate that the ceria films are nanocrystalline (CeO2, cubic phase \textFm[`3]\textm {\text{Fm}}\bar{3}{\text{m}} ) with an average grain size of about 2–3 nm for the samples grown on glass and of about 4–5 nm for the samples grown on silicon. The analyses of ceria layers grown on silicon show that the ceria coatings are free from organic residues and that a Si-oxide layer is formed at the film/substrate interface. The optical results evidence a red shift of the energy gap of about 0.5 eV that can be ascribed to conversion of relevant Ce4+ sites to Ce3+ sites and a consequent creation of oxygen vacancy at the surface of the ceria grains.  相似文献   

16.
The series of RE5Li2Sn7 (RE = Ce–Sm) compounds were synthesized by high‐temperature reactions and structurally characterized by single‐crystal X‐ray diffraction. The compounds are pentacerium dilithium heptastannide, Ce5Li1.97Sn7.03, pentapreseodymium dilithium heptastannide, Pr5Li1.98Sn7.02, pentaneodymium dilithium heptastannide, Nd5Li1.99Sn7.01, and pentasamarium dilithium heptastannide, Sm5Li2Sn7. All five compounds crystallize in the chiral orthorhombic space group P212121 (No. 19), which is relatively uncommon among intermetallic phases. The structure belongs to the Ce5Li2Sn7 structure type (Pearson symbol oP56), with 14 unique atoms in the asymmetric unit. Minor compositional variations exist, due to the mixed occupancy of Li and Sn atoms at one of the Li sites. The small occupational disorder is most evident for RE5Li2−xSn7+x (RE = Ce, Pr; x≃ 0.03), while the structure of Nd5Li2Sn7 and Sm5Li2Sn7 show no apparent disorder.  相似文献   

17.
Four new ternary carbometalates of the general formula RE2[Mo2C3] with RE = Ce, Sm, Tb and Dy have been prepared by a high temperature synthesis route. The Ce, Tb and Dy compounds crystallize isotypic to Er2[Mo2C3], Sm2[Mo2C3], however, is an isotype of Ho2[Cr2C3]. The crystal structures comprise polyanionic layers [(Mo2C3)6?] with the rare‐earth metal ions in between. The layers are constructed by edge and vertex connected MoC4 tetrahedra, which display strong covalent Mo–C bonds. The compounds show metallic behaviour close to the classical limit of 100 μΩ cm for metallic conductors. The magnetic properties are quite different, however they are consistent with the presence of trivalent RE3+ ions with the exception of Ce2[Mo2C3], which contains nonmagnetic Ce species. Electronic structure calculations reveal that the additional electron mainly populates the Ce partial structure. The title compounds extend the series of known carbomolybdates RE2[Mo2C3]. The late lanthanides Gd, Tb, Dy, Ho, Er, Tm, and Lu with comparatively small RE3+ ions and Ce as Ce4+ adopt the Er2[Mo2C3] structure type, whereas the early lanthanides Sm and Pr with larger RE3+ ions crystallize in the structure types of Ho2[Cr2C3] and Pr2[Mo2C3], respectively.  相似文献   

18.
The intermetallic cerium compounds Ce3-Pd3Bi4, CePdBi, and CePd2Zn3 were synthesized from the elements in sealed tantalum ampoules in an induction furnace. The compounds were characterized by X-ray powder and single crystal diffraction: CeCo3B2 type (ordered version of CaCu5), P6/mmm, a = 538.4(4), c = 427.7(4) pm, wR2 = 0.0540, 115 F 2 values, 9 variables for CePd2Zn3 and Y3Au3Sb4 type, I \({\bar 4}\)3d, a = 1005.2(2) pm, w R2 = 0.0402, 264 F 2 values, 9 variables for Ce3Pd3Bi4, and MgAgAs type, a = 681.8(1) pm for CePdBi. The bismuthide structures are build up from three-dimensional networks of corner-sharing PdBi4 tetrahedra with Pd–Bi distances of 281 (Ce3Pd3Bi4) and 296?pm (CePdBi), respectively. The cerium atoms are located in larger voids of coordination number 12 (Ce3Pd3Bi4) and 10 (CePdBi). In CePd2Zn3 the cerium atoms fill larger channels within the three-dimensional [Pd2Zn3] network with 18 (6 Pd + 12 Zn) nearest neighbors. The three compounds contain stable trivalent cerium with experimental magnetic moments of μeff = 2.70(2), 2.48(1), and 2.49(1) μB/Ce atom for CePd2Zn3, Ce3Pd3Bi4, and CePdBi, respectively. Susceptibility and specific heat data gave no hint for magnetic ordering down to 2.1?K.  相似文献   

19.
Two new cerium(IV) phosphates were obtained: cerium(IV) hydroxidophosphate, Ce(OH)PO4, and cerium(IV) oxidophosphate, Ce2O(PO4)2, which were shown to complement the classes of isostructural compounds M(OH)PO4 and R2O(PO4)2, where M=Th, U and R=Th, U, Np, Zr. Ce2O(PO4)2 oxidophosphate is formed by elimination of H2O from the crystal structure of Ce(OH)PO4 during its thermal decomposition. The structures of Ce(OH)PO4 and Ce2O(PO4)2 are related to each other with the same Cmce space group and similar unit cell parameters (a=6.9691(3) Å, b=9.0655(4) Å, c=12.2214(4) Å, V=772.13(8) Å3, Z=8; a=7.0220(4) Å, b=8.9894(5) Å, c=12.544(1) Å, V=791.8(1) Å3, Z=4, respectively).  相似文献   

20.
Cerium intermetallic compounds exhibit anomalous physical properties such as heavy fermion and Kondo behaviors. Here, an ab initio study of the electronic structure, magnetic properties, and mixed valence character of Ce2Ni3Si5 using density functional theory (DFT) is presented. Two theoretical methods, including pure Perdew–Burke–Ernzerhof (PBE) and PBE + U , are used. In this study, Ce3+ and Ce4+ are considered as two different constituents in the unit cell. The formation energy calculations on the DFT level propose that Ce is in a stable mixed valence of 3.379 at 0 K. The calculated electronic structure shows that Ce2Ni3Si5 is a metallic compound with a contribution at the Fermi level from Ce 4f and Ni 3d states. With the inclusion of the effective Hubbard parameter (U eff), the five valence electrons of 5 Ce3+ ions are distributed only on Ce3+ 4f orbitals. Therefore, the occupied Ce3+ 4f band is located in the valence band (VB) while Ce4+ 4f orbitals are empty and Located at the Fermi level. The calculated magnetic moment in Ce2Ni3Si5 is only due to cerium (Ce3+) in good agreement with the experimental results. The U eff value of 5.4 eV provides a reasonable magnetic moment of 0.981 for the unpaired electron per Ce3+ ion. These results may serve as a guide for studying present mixed valence cerium‐based compounds. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号