首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study 1-substituted phenyl-3,5-diphenylformazans were synthesized from benzaldehyde-N-phenylhydrazone and appropriate phenyldiazonium salts having CH3, Br, and Cl at the o-, m-, and p-positions of 1-phenyl ring. Their structures were determined by infrared and ultraviolet–visible spectra. Bathochromic effect in accordance with the electron-donating effect of CH3, Br, and Cl group and its magnitude were dependent upon type and position of substituent on the ring. The ground-state geometries and absorption wavelengths for 1-phenyl substituted formazans were studied with density functional theory and time-dependent density functional theory. The calculations were carried out by using PBE1PBE functional with 6-311G(2d,2p) basis set for λmax of the UV–vis spectra for the studied formazans. A good agreement was obtained between the experimental and computed values.  相似文献   

3.
Single crystals of diammonium tetranitratouranylate (NH4)2[UO2(NO3)4] (I) and a new diammonium tetranitratouranylate complex with 18-crown-6 [(NH4)(18C6)]2[UO2(NO3)4] (II) have been synthesized by the reaction of diaquadinitratouranyl tetrahydrate with ammonium nitrate in a nitric acid solution and the reaction of the same reagents with 18C6 in an ethanol solution, respectively. The X-ray diffraction analysis of compounds I and II has been performed. Crystals of compounds I and II are monoclinic, Z = 2, space group P21/n, a = 6.4075(5) ?, b = 7.7851(7) ?, c = 12.4461(12) ?, β = 101.239(1)°, V = 608. 94(9) ?3 for compound I and a = 10.542(9) ?, b = 8.590(8) ?, c = 22.5019(19) ?, β = 101.632(1)°, V = 2058.3(3) ?3 for compound II. The [UO2(NO3)4]2− complex anion in compounds I and II contains two monodentate and two bidentate cyclic nitrato groups, and the coordination number of uranyl is 6. The 18C6 molecule in the structure of compound II has the classic crown conformation and combined with the ammonium ion by three hydrogen bonds. Compounds I and II formed by electrostatic attraction forces between counterions are stabilized by (NH4+)NH...O(NO3) interionic hydrogen bonds.  相似文献   

4.
It is found that charge-transfer on NO2 with Cl2 is fast at thermal energy. The Cl2 ion reacts with NO2 to produce Cl and NO2Cl, and SH charge-transfers rapidly with both Cl2 and NO2. From the exothermicities implied it is deduced that EA (SH)<EA (NO2)< EA (Cl2) or EA (NO2) = 2.38 ± 0.06 eV and EA (Cl2 = 2.46 ± 0.14 eV.  相似文献   

5.
Phase diagram of a ternary liquid system [Th(NO3)4(TBP)2]-[UO2(NO3)2(TBP)2]-Exide 100 solvent was studied at 298.15–333.15 K. Original Russian Text ? A.K. Pyartman, V.A. Keskinov, V.V. Lishchuk, Ya.A. Reshetko, V.E. Skobochkin, 2007, published in Zhurnal Prikladnoi Khimii, 2007, Vol. 80, No. 8, pp. 1243–1245.  相似文献   

6.
Thermogravimetric studies are reported for analytical precipitates of the types MPb[Co(NO2)6] and M2Pb[Co(NO2)6], where M represents the univalent cations NH+4, K+, Rb+, Cs+, and Tl+. Compounds of the latter series are consitently more stable to higher temperatures. For either series increasing the radius of M increases thermal stability. Decomposition to temperatures approaching 500°C involves some four separate processes.  相似文献   

7.
The preparation, vibrational and luminescence spectra of the title compound are described. The complex has bidentate nitrate groups and bridging fluoride ions. The spectra are assigned in detail and interpreted as showing couplings between the uranyl antisymmetric stretching modes and between the nitrate modes within the dimer, the coupling energy being 17 cm? in the former case. There is no clear evidence for electronic coupling involving the uranyl groups.  相似文献   

8.
合成了离子对配合物(NO2Q1)2[Ni(mnt)2],并用元素分析和红外光谱进行了表征.单晶结构分析结果表明三斜晶系,空间群p-1.晶胞参数a=8.2240(16)A,6=10.777(2)A,c=12.137(2)A,α=72.58(3).,β=72.82(3)°,γ=68.78(3)°,V=935.4(3)A3,Z=1.(NO2Ql)+和[Ni(mnt)2]2-分别形成了完全分立的柱状堆积结构.在阴离子堆积柱内,Ni(Ⅱ)离子形成了一维均匀链.阳离子间,比邻的芳环间存在弱的π…π作用.  相似文献   

9.
Crystal structures of chelate compounds Ni[(iso-C4H9)2PS2]2 (I) and Pd[(iso-C4H9)2PS2]2 (II) have been determined by X-ray diffraction: diffractometer X8-APEX, MoK α∔ -radiation, 1048 F hkl , R = 0.0544 for I and CAD-4 diffractometer, MoK α∔ -radiation, 1283 F hkl , R = 0.0347 for II. The crystals are rhombic: a = 12.921(5) Å, b = 17.094(5) Å, c = 22.971(5) Å; V = 5074(3) Å3, Z = 8, calc = 1.250 g/cm3, space group Pbca for I and a = 13.312(3) Å, b = 16.130(7) Å, c = 23.171(5) Å; V = 4975(3) Å3, Z = 8, ρcalc = 1. 208 g/cm3, space group Pbca for II. The structures of I and II are formed by discrete mononuclear molecules. Coordination cores MS4 (M = Ni, Pd) approach planar square configurations. Original Russian Text Copyright ? 2005 by L. A. Glinskaya, T. G. Leonova, T. E. Kokina, R. F. Klevtsova, and S. V. Larionov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 4, pp. 715–720, July–August, 2005.  相似文献   

10.
研究了钌-双膦-二胺配合物催化剂RuCl2[(S)-P-Phos]-[(S)-DAIPEN] [P-Phos: 2,2',6,6'-四甲氧基-4,4'-双(二苯基膦基)-3,3'-二吡啶, DAIPEN: 1,1-二(4-甲氧苯基)-2-异丙基-1,2-乙二胺]催化芳香酮不对称加氢反应的性能, 考察了不同的碱、叔丁醇钾浓度、反应溶剂、底物/催化剂摩尔比等因素对反应活性和对映选择性的影响. 在苯乙酮、叔丁醇钾、催化剂的摩尔比为1000:20:1, 氢气压力为2 MPa, 反应温度为30 ℃时, 苯乙酮的转化率和α-苯乙醇的对映选择性(ee)分别达到了100%和88.5%, 2'-溴苯乙醇的ee 值可达97.1%.  相似文献   

11.
Heteroleptic silver(I) nitrate complexes containing the bis[2-(diphenylphosphano)phenyl]ether (DPEphos) ligand and the heterocyclic thioamides pyridine-2(1H)-thione (py2SH), pyrimidine-2(1H)-thione (pymtH), 4,6-dimethylpyrimidine-2(1H)-thione (dmpymtH), 1,4,5,6-tetrahydropyrimidine-2-thione (thpymtH) or 1,3-imidazolidine-2-thione (imtH2) have been synthesized and characterized by IR and UV-Vis spectroscopy, elemental analyses and melting point determinations. The complexes can be obtained by the addition of the thioamide ligand to an AgNO3-diphosphane adduct in dichloromethane/ethanol solution. The molecular structure of [Ag(DPEphos)(py2SH)2]NO3 complex has been established by single-crystal X-ray diffraction. The structure features a tetrahedral silver(I) center with two phosphorus atoms from the chelating diphos ligand, and the exocyclic sulfur atom of two heterocyclic thioamide units. Intense blue-green emission is observed in the region 470-483 nm for all the complexes in the solid state and in solution at ambient temperature.  相似文献   

12.
Electrical conductivities were measured for the ternary systems Y(NO3)3+La(NO3)3+H2O, La(NO3)3+Ce(NO3)3+H2O, La(NO3)3+Nd(NO3)3+H2O, and their binary subsystems Y(NO3)3+H2O, La(NO3)3+H2O, Ce(NO3)3+H2O, and Nd(NO3)3+H2O at (293.15, 298.15 and 308.15) K. The measured conductivities were used to test the generalized Young’s rule and the semi-ideal solution theory. The comparison results show that the generalized Young’s rule and the semi-ideal solution theory can yield good predictions for the conductivities of the ternary electrolyte solutions, implying that the conductivities of aqueous solutions of (1:3 + 1:3) electrolyte mixtures can be well predicted from those of their constituent binary solutions by the simple equations.  相似文献   

13.
14.
1-Allyl-4-aminopyridinium chloride reacts with Cu(NO3)2 · 3H2O in an ethanolic solution under the conditions of ac electrochemical synthesis at copper electrodes to form crystals of compound [(NH2C5H4N(C3H5))2Cu3Cl3(NO3)2] (I). The crystals of compound I are monoclinic: space group P21/c, Z = 4, a = 25.770(7), b = 7.230(4), c = 12.505(5) ?, β = 92.58(3)°, V = 2328(2) ?3. The direct interaction of 1-allylquinolinium nitrate with Cu(NO3)2 · 3H2O in a methanolic solution in the presence of metallic copper yields crystals of compound [C9H7N(C3H5)Cu(NO3)2] (II). The crystals of compound II are triclinic: space group P , a = 6.756(3), b = 8.391(4), c = 12.489(5) ?, α = 77.18(3)°, β = 89.48(4)°, γ = 73.32(3)°, V = 662.0(5) ?3. The structure of compound I is built of infinite linear anions: polymeric fragments {(NH2C5H4N(C3H5))2Cu3Cl3(NO3)2} n . Each of two copper atoms (Cu(1) and Cu(2)) π-coordinates the C=C bonds of the allyl groups of the 1-allyl-4-aminopyridinium cations, the oxygen atom of the nitrate ions, and two chlorine atoms. The third copper atom Cu(3) is linearly linked with two chlorine atoms. Particular polymeric fragments are additionally joined by the N-H…O, C-H…O, C-H…Cl hydrogen bonds. The crystal structure of compound II is built-up of the isolated L2Cu2(NO3)4 fragments (L is the 1-allylquinolinium cation). The metal atom is localized in the trigonal pyramidal coordination environment of three oxygen atoms of the nitrate ions and of the C=C bond of the allyl group of the cation. The particular L2Cu2(NO3)4 fragments are additionally joined by the C-H…O hydrogen bonds. Original Russian Text ? A.V. Pavlyuk, T. Lis, M.G. Mys’kiv, 2009, published in Koordinatsionnaya Khimiya, 2009, Vol. 35, No. 6, pp. 458–462.  相似文献   

15.
This article presents the continuation of the work on the development of technical equations of state for linear and cyclic siloxanes already documented in this journal. The fluids considered herewith are octamethyltrisiloxane (MDM, C8H24Si3O2), decamethyltetrasiloxane (MD2M, C10H30Si4O3), dodecamethylpentasiloxane (MD3M, C12H36Si5O4), dodecamethylcyclohexasiloxane (D6, C12H36Si6O6). The 12-parameter functional form proposed by Span and Wagner has been selected because of its positive characteristics. Siloxanes are produced in bulk quantities and are mostly utilized in the cosmetics industry and, mixed, as high-temperature heat transfer fluids. Furthermore, they are used as working fluids in high-temperature organic Rankine cycle power plants. The available property measurements are carefully evaluated and selected for the optimization of equation of state parameters. For some of the fluids, experimental values are scarce, therefore ad hoc estimation methods have been used to supply more information to the procedure for the optimization of the parameters of the equation of state. In addition, saturated liquid density and vapor pressure measurements are correlated with the equations proposed by Daubert and Wagner–Ambrose, respectively, to provide short, simple, and accurate equations for the computation of these properties. The recently developed isobaric ideal-gas heat capacity correlation for the selected siloxanes is included in the thermodynamic models. The performance of the newly developed equations of state is tested by comparison with experimental data and also with predictions calculated with the Peng–Robinson–Stryjek–Vera cubic EoS, as this model was adopted in previous technical studies. The new thermodynamic models perform significantly better than cubic equations of state. Ts and P  – vv diagrams for all the substances are also reported.  相似文献   

16.
Single crystals of the [PdL2(NO2)2] complex were obtained for the first time, where L is di-n-butylsulfide. Single crystal and powder diffraction studies provided new data on the molecular and crystal structure of this compound.  相似文献   

17.
A sequence of structural phase transitions in [(CH3)2NH2]3[Bi2Cl9] (DMACB) is established on the basis of differential scanning calorimetry (DSC) and dilatometric studies. Four phase transitions are found: at 367/369, 340/341, 323/325 and 285/292 K (on cooling/heating). The crystal structure of DMACB is determined at 350 K. It crystallizes in monoclinic space group P21/n: a=8.062(2), b=21.810(4), c=14.072(3) Å, β=92.63(3)°, Z=4, R1=0.0575, wR2=0.1486. The crystal is built of the double chain anions (“pleated ribbon structure”) and the dimethylammonium cations. Dielectric studies in the frequency range 75 kHz-900 MHz indicate relatively fast reorientation of the dimethylammonium cations over the I, II, III and IV phases. Infrared spectra are recorded in the temperature range 40-300 K and analyzed in region assigned to the symmetric and asymmetric NC2 stretching vibrations. Optical observations show the existence of the ferroelastic domain structure over all phases below 367 K. The possible mechanisms of phase transitions are discussed on the basis of presented results.  相似文献   

18.
The viscosities of Sr(NO3)2 and Cd(NO3)2 have been determined in dioxane, glycol and methyl alcohol+water mixtures at 10, 20 and 30% by weight. The B values have been computed at different temperatures both from the Jones—Dole and Das's equation. From the B values, the effective rigid molar volume, its change with % of organic solvent, temperature and the ion—solvent interaction have been inferred. Activation parameters have also been calculated and the structure breaking effect has been deduced.  相似文献   

19.
Triphenylbismuth diaroxides Ph3Bi(OAr)2 (Ar = C6H3(Br2-2,4) (I), C6H2(Br2-2,6)(NO2-4) (II), and C6H2[(NO2)3-2,4,6] (III) are synthesized in yields up to 74% by the reaction of triphenylbismuth with phenols in the presence of hydrogen peroxide (taken at a molar ratio 1: 2: 1, respectively) in ether. According to X-ray diffraction data, the bismuth atoms in compounds I-III have distorted trigonal-bipyramidal coordination with the aroxyl substituents in the axial positions; the Bi-C, Bi-O bond lengths and the OBiO, CBiC angles vary in the intervals 2.162–2.204, 2.150–2.299 ? and 172.4°–176.1°, 109.6°–139.9°, respectively. Compound II exhibits intramolecular contacts between the central atom and ortho-Br atoms (3.924, 4.101 ?), and compound III has similar contacts of the Bi atom with the O atoms of the ortho-nitro groups (3.114, 3.313 ?). Original Russian Text ? V.V. Sharutin, I.V. Egorova, O.K. Sharutina, A.P. Pakusina, M.A. Pushilin, 2007, published in Koordinatsionnaya Khimiya, 2007, Vol. 33, No. 1, pp. 14–21.  相似文献   

20.
Three new uranyl tungstates, A8[(UO2)4(WO4)4(WO5)2] (A=Rb (1), Cs (2)), and Rb6[(UO2)2O(WO4)4] (3), were prepared by high-temperature solid-state reactions and their structures were solved by direct methods on twinned crystals, refined to R1=0.050, 0.042, and 0.052 for 1, 2, and 3, respectively. Compounds 1 and 2 are isostructural, monoclinic P21/n, (1): a=11.100(7), b=13.161(9), , β=90.033(13)°, , Z=8 and (2): , , , β=89.988(2)°, , Z=8. There are four symmetrically independent U6+ sites that form linear uranyl [O=U=O]2+ cations with rather distorted coordination in their equatorial planes. There are six W positions: W(1) and W(2) have square-pyramidal coordination (WO5), whereas W(3), W(4), W(5), and W(6) are tetrahedrally coordinated. The structures are based upon a novel type of one-dimensional (1D) [(UO2)4(WO4)4(WO5)2]4− chains, consisting of WU4O25 pentamers linked by WO4 tetrahedra and WO5 square pyramids. The chains run parallel to the a-axis and are arranged in modulated pseudo-2D-layers parallel to (0 1 0). The A+ cations are in the interlayer space between adjacent pseudo-layers and provide a 3D integrity of the structures. Compounds 1 and 2 are the first uranyl tungstates with 2/3 of W atoms in tetrahedral coordination. Such a high concentration of low-coordinated W6+ cations is probably responsible for the 1D character of the uranyl tungstate units. The compound 3 is triclinic, Pa=10.188(2), b=13.110(2), , α=97.853(3), β=96.573(3), γ=103.894(3)°, , Z=4. There are four U positions in the structure with a typical coordination of a pentagonal bipyramid that contain uranyl ions, UO22+, as apical axes. Among eight W sites, the W(1), W(2), W(3), W(4), W(5), and W(6) atoms are tetrahedrally coordinated, whereas the W(7) and W(8) cations have distorted fivefold coordination. The structure contains chains of composition [(UO2)2O(WO4)4]6− composed of UO7 pentagonal bipyramids and W polyhedra. The chains involve dimers of UO7 pentagonal bipyramids that share common O atoms. The dimers are linked into chains by sharing corners with WO4 tetrahedra. The chains are parallel to [−101] and are arranged in layers that are parallel to (1 1 1). The Rb+ cations provide linkage of the chains into a 3D structure. The compound 1 has many structural and chemical similarities to its molybdate analog, Rb6[(UO2)2O(MoO4)4]. However, the compounds are not isostructural. Due to the tendency of the W6+ cations to have higher-than-fourfold coordination, part of the W sites adopt distorted fivefold coordination, whereas all Mo atoms in the Mo compound are tetrahedrally coordinated. Distribution of the WO5 configurations along the chain extension does not conform to its ‘typical’ periodicity. As a result, both the chain identity period and the unit-cell volume are doubled in comparison to the Mo analog, which leads to a new structure type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号