首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The abilities and performances of Mn–C76,Mn–B38N38,Zn–CNT(6,0)and Zn–BNNT(6,0)to the oxidation of NO2 and CO are investigated.The oxidation reactions of NO2 and CO through the Langmuir-Hinshelwood(LH)and Eley-Rideal(ER)mechanisms by theoretical methods are examined.The most stable intermediates of oxidation reactions of NO2 and CO on Mn–C76,Mn–B38N38,Zn–CNT(6,0)and Zn–BNNT(6,0)are obtained from thermodynamics view point.In the LH pathway,Mn–C76,Mn–B38N38,Zn–CNT(6,0)and Zn–BNNT(6,0)catalysts are deactivated via the second NO2 and CO molecules.In the ER pathway,the second NO3 and CO2 molecules are separated.Finally,the Mn–C76,Mn–B38N38,Zn–CNT(6,0)and Zn–BNNT(6,0)are proposed to oxidize NO2 and CO molecules with high performances at room temperature.  相似文献   

2.
3.
4.
5.
6.
A series of competitive metal-ion transport experiments has been performed.Each involved transport from an aqueous source phase across an organic membrane phase into an aqueous receiving phase.The source phase contained equimolar concentration of Co(Ⅱ),Ni(Ⅱ),Zn(Ⅱ),Cd(Ⅱ),Ag(Ⅰ),Cu(Ⅱ) and Mn(Ⅱ) metal cations.The transport experiments of metal cations were carried out by 2,2’-dithio(bis)benzothiazole(DTB) in chloroform(CHCl3).The source phase being buffered at range pH of 4-6.5 and receiving phase being buffered at pH 3.The obtained results show that the selectivity and the efficiency of Ag(I) transport from aqueous solutions are observed in this investigation.The effect of concentration of palmitic acid in the transport efficiency of Ag(Ⅰ) ion was also conformed.  相似文献   

7.
A new ligand, N-phenyl-N -2-furanthiocarbohydrazide (HPhfth), and its complexes with VOIV, MnIII, FeIII, CoII, NiII, CuII and ZnII have been prepared and characterized by elemental analyses, magnetic susceptibility measurements, i.r., n.m.r., u.v.–vis., mass and FAB mass spectral data. The room temperature e.s.r. spectra of the VOIV, FeIII and CuII complexes yield <g> values characteristic of square pyramidal VOIV, octahedral FeIII and square planar CuII, respectively. The NiII and CuII complexes semiconduct, but the ZnII complex is an insulator at room temperature. However, the conductivity increases as the temperature increases from 303–383 K, with a band gap of 0.21–1.01 eV. HPhfth and its soluble complexes have been screened against several bacteria and fungi.  相似文献   

8.
BONDLENGTHSOFBUCKY-BALLSC_(60),C_(240),C_(540),ANDC_(960)¥LeiLIU;KaiTaiCHEN;andYuFenLI(DepartmentofPhysics,FudanUniversity,Shan...  相似文献   

9.
A new potential tetradentate ligand, N-nicotinoyl-N-2-furanthiocarbohydrazide (H2Nfth), and its complexes with VOIV, MnII, FeII,III, CoII, NiII, CuII and ZnII have been prepared and characterized by elemental analyses, magnetic susceptibility measurements, u.v.–vis, i.r., n.m.r., ES+ and FAB mass spectral data. The room temperature e.s.r spectra of the VOIV and FeIII complexes yield g values, characteristic of octahedral complexes. The Mössbauer spectra of [Fe(HNfth)2] and [Fe2(Nfth)3] at room temperature and at 78 K suggest the presence of high-spin iron(II) and iron(III), respectively. The complexes are electrically insulating at room temperature, however, their conductivities increase as the temperature increases from 333–383 K, with a band gap of 0.46–0.77 eV, indicating their semiconducting behaviour. H2Nfth and its soluble complexes have been screened against several bacteria and fungi.  相似文献   

10.
Nine new solid complexes of Mn(Ⅱ),Co(Ⅱ),Cu(Ⅱ),Zn(Ⅱ.),Ag(Ⅰ) nitrates with 4',5'-dibromobenzo-15—crown—5(L_A),Ag(Ⅰ),Cd(Ⅱ)nitrates with tetrabromodibenzo—18—crown—6(L_B)and Cu(Ⅱ), Ag(Ⅰ) nitrates with 4'—bromo—5'—nitrobenzo—15—crown-5(L_c),having the compositions of M(NO_2)_2·L·nH_2O(M=Mn,Co, Zn,L=L_A,n=2;M=Cu,L=L_A,n=1.5; M=Cd, L=L_B,n=0; M=Cu,L=Lc,n=2) and AgNO_·L·nCH_3CN(L=LA,n=0; L=L_B,n=1; L=Lc,n=1/2) have been synthesized in nonaqueous solvent. All the isolated complexes have been characterized by elementary analysis, IR and UV spectra, differential thermal and thermogravimetric analysis, X—ray powder diffraction analysis, molar conductance and measuremends of solubility in some general solvents.  相似文献   

11.
Thermodynamics of complexation reactions between Zn(II), Ni(II), Hg(II), Co(II), and Cu(II) acetates and 3,35,5-tetramethyl-4,4-dibutyldipyrrolylmethene in DMF at 298.15 K is studied by calorimetric and spectrophotometric methods. The replacement of Zn2+, Ni2+, and Hg2+ ions by Co2+ and Cu2+ ions was found to increase the equilibrium constants of reactions of complex formation with dipyrrolylmethene by more than two orders of magnitude. The role of solvation interactions in coordination of dipyrrolylmethene by d-metal ions is established.  相似文献   

12.
13.
The reactions of complex formation of Cu(II), Co(II), Zn(II), Ni(II), and Cd(II) acetates with 3,3′,4,4′5,5′-hexamethyl-2,2′-dipyrrolylmethene (HL) in DMF were studied by the electronic spectroscopy and calorimetric titration methods at 298.15 K. The main products of the above reactions are [ML2] chelates. In the case of Cu and Ni salts, the process occurs through the spectrally recorded stage of formation of the heteroligand [ML(AcO)] complexes. The reaction with Cd acetate terminates at the stage of the heteroligand complex formation due to the large radius and decreasing electron affinity of the Cd2+ ion. The effect of the metal nature appears in the increasing thermodynamic stability of single-type complexes in the series [ML2]: Ni(II) < Zn(II) < Co(II) < Cu(II) and [ML(AcO)]: Cd(II) < Ni(II) < Cu(II).  相似文献   

14.
A novel mixed-ligand complexes with empirical formulae: Ln(4-bpy)1.5(CCl3COO)3·nH2O (where Ln(III) = Pr, Sm, Eu, Gd, Tb; n = 1 for Pr, Sm, Eu and n = 3 for Gd, Tb; 4-bpy = 4,4′-bipyridine) were prepared and characterized by chemical, elemental analysis and IR spectroscopy. Conductivity studies (in methanol, dimethylformamide and dimethylsulfoxide) were also described. All complexes are crystalline. The way of metal–ligand coordination was discussed. The thermal properties of complexes in the solid state were studied under non-isothermal conditions in air atmosphere. During heating the complexes decompose via intermediate products to the oxides: Pr6O11, Ln2O3 (for Sm, Eu, Gd) and Tb4O7. TG-MS system was used to analyze principal volatile thermal decomposition and fragmentation products evolved during pyrolysis of Pr(III) and Sm(III) compounds in air.  相似文献   

15.
Divalent metal complexes of N,N′-bis(4-imidazolymethyl)etylenediamine (EMI) have been studied using potentiometric and spectroscopic techniques (UV-Vis and NMR methods) in aqueous 0.1 mol⋅L−1 KCl supporting electrolyte at 25 °C. Final models and overall stability constants for the complexes of Ca(II), Cd(II), Co(II), Cu(II), Mg(II), Mn(II), Ni(II), Pb(II) and Zn(II) have been established by potentiometry for all M(II)–EMI systems, except for Co(II)–EMI. The data revealed that EMI forms ML complexes with all M(II)–EMI systems, which is the dominant species over a wide range of pH except for the Ca(II)–EMI and Mg(II)–EMI systems. Formation of the MnHL complex was also found for Mn(II)–EMI solutions. In addition, the UV-Vis and 1H NMR results allowed us establish the coordination modes for the metal complexes between EMI with Cd(II), Cu(II), Ni(II) and Zn(II).  相似文献   

16.
Complexes [ML2] of cobalt(II), nickel(II), copper(II), zinc(II), and cadmium(II) with asymmetrically substituted (E)-3-ethyl-5-[(4-iodo-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl]-2,4-dimethyl-1H-pyrrole (HL) have been prepared and characterized for the first time. The spectral properties, stability in solutions and in the solid phase at elevated temperature of the complexes have been studied. The effects of complexing metal ion and the reaction medium on the spectral luminescent properties (absorptivity, quantum yield, fluorescence lifetime, and the radiation constant) and on thermal destruction of the [ML2] complexes have been discussed.  相似文献   

17.
18.
19.
20.
New mixed-ligand complexes, [M2(BAMP)(bipy)2][MCl4]2, M=Co+2(1), Cu+2(2), [M2(TAMEN)(bipy)2][MCl4]2, M=Fe+2(3), Co2+(4), and [Fe2(TAMEN)(bipy)2][FeCl6]2 (5), where BAMP and TAMEN stand for the Mannich bases N,N′-bis(antipyryl-4-methylene)-piperazine and N,N′-tetra(antipyryl-4-methylene)-1,2-ethane-diamine, respectively, have been obtained and characterized by elemental analyses, conductometric and magnetic susceptibility measurements at room temperature, mass spectrometry, UV-Vis, infrared, and mass spectroscopy, and 1H NMR spectra for the ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号