首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The excitation of UV-absorbing MALDI matrixes with visible laser (532 nm wavelength) and the desorption/ionization of biomolecules were performed by coating the analytes doped matrix with Au thin film (5–10 nm) using ion sputtering deposition. The Au film was first ablated with the laser of higher fluence, resulting in a crater/hole about the size of the laser beam spot on the target. After a few initial laser shots, analytes and matrix related ions were observed from the crater even at lower laser fluence. Electron microscopy inspection on the laser ablated region revealed the formation of nanoparticles with sizes ranging from <10 to 50 nm. Compared with the infra-red laser (1064 nm) excitation, the visible laser produced much higher abundance of matrix radical ions, and less heating effect as measured by the thermometer molecules. The results suggest the photo-excitation and photo-ionization of matrix molecules by the visible laser, possibly assisted by the gold nanoparticles and nanostructures left on the ablated crater.  相似文献   

2.
Jhanis J. Gonzalez 《Talanta》2007,73(3):567-576
Pulsed laser ablation (266 nm) was used to generate metal particles of Zn and Al alloys using femtosecond (150 fs) and nanosecond (4 ns) laser pulses with identical fluences of 50 J cm−2. Characterization of particles and correlation with inductively coupled plasma mass spectrometer (ICP-MS) performance was investigated. Particles produced by nanosecond laser ablation were mainly primary particles with irregular shape and hard agglomerates (without internal voids). Particles produced by femtosecond laser ablation consisted of spherical primary particles and soft agglomerates formed from numerous small particles. Examination of the craters by white light interferometric microscopy showed that there is a rim of material surrounding the craters formed after nanosecond laser ablation. The determination of the crater volume by white light interferometric microscopy, considering the rim of material surrounding ablation craters, revealed that the volume ratio (fs/ns) of the craters on the selected samples was approximately 9 (Zn), 7 (NIST627 alloy) and 5 (NIST1711 alloy) times more ablated mass with femtosecond pulsed ablation compared to nanosecond pulsed ablation. In addition, an increase of Al concentration from 0 to 5% in Zn base alloys caused a large increase in the diameter of the particles, up to 65% while using nanosecond laser pulses. When the ablated particles were carried in argon into an ICP-MS, the Zn and Al signals intensities were greater by factors of ∼50 and ∼12 for fs versus ns ablation. Femtosecond pulsed ablation also reduced temporal fluctuations in the 66Zn transient signal by a factor of 10 compared to nanosecond laser pulses.  相似文献   

3.
Here we demonstrate that the emission spectra of the ablation-plasma produced by nanosecond laser pulses on metallic Al targets may be directly connected to the ablation rates and the dimensions of the ablated craters. We show that the variation of the individual spectral-lines intensities with pulse number gives direct, real-time information on the crater depth, whereas the relative intensities of the lines and their widths enable us to study the variation of the electron temperature and density with pulse number and laser fluence in direct connection to the ablation rates. To interpret these results we use a simple model in which the plasma-plume is treated as an ideal gas expanding away from the target with a velocity given by the electron-temperature, and exerting a recoil pressure determined by the electron temperature and density. The model correlates the plume hydrodynamic-length to the crater dimensions and succeeds in predicting the rims heights.  相似文献   

4.
Pulsed laser ablation in liquids (PLAL) is a multi-scale process, which is widely studied either in batch ablation with prolonged target irradiation as well as mechanistic investigations, in a defined (single-shot) process. However, fundamental studies on defined pulse series are rare. We have investigated the effect of a developing rough morphology of the target surface on the PLAL process with nanosecond pulses and, partially, picosecond pulses. At low fluence the cavitation bubble growth as well as the ablation yield depend on the irradiation history of the target. The bubble size increases with repeated irradiation on one spot for the first 2–30 pulses as well as with the applied dose. This is discussed within the framework of incubation effects. Incubation is found to be important, resulting in a bubble volume increase by a factor of six or more between pristine and corrugated targets. The target surface, changing from smooth to corrugated, induces a more efficient localization of laser energy at the solid-liquid interface. This is accompanied by a suppressed reflectivity and more efficient coupling of energy into the laser-induced plasma. Thus, the cavitation bubble size increases as well as ablation being enhanced. At high fluence, such incubation is masked by the rapid development of surface damage within the first shots, which eventually would lead to a reduction of bubble sizes.  相似文献   

5.
The 581 nm output from a dye laser in a fluence range between 2.86 and 11.47 J cm−2 was used to ablate pure Zn and Fe foils. The average ablation rate (AAR, μm per shot) was calculated for different experimental variables (buffer gas, pressure, laser fluence and focal conditions). Deposition of previously ablated material in the ablation crater results in large variation of the observed AAR values. This effect was observed in air and argon buffer gases at atmospheric pressure. The situation is largely alleviated at reduced pressure due to free expansion of the ablated material. Under these circumstances the capability of laser-induced plasmas to resolve interfacial structures is improved. The effect on depth-resolved studies was checked with a commercial Zn-coated steel sample. Due to the Gaussian-like energy distribution of the incident laser beam, the material is ablated to produce a conical crater. This fact ensures that the Zn signal remains for a longer time because the ablated region spreads over the edge gradually. At low pressure the emission peaks are better defined and the background becomes flat. However, these conditions produce also the lowest net intensities and some peaks are not detected. An Ar atmosphere produces more intense spectral lines at both pressure levels. Best analytical results were obtained at reduced pressure, with a slight improvement in depth resolution in the presence of Ar. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
Near-field laser ablation (NF-LA) coupled with mass spectrometry (MS) is very promising for highly spatially resolved chemical analyses on various substrates at atmospheric pressure, for example, in materials and life science applications. Although nanoscale sample craters can be produced routinely, no molecular mass spectra of ablated material from craters of ≤1 μm diameter have ever been acquired by NF-LA MS at atmospheric pressure. Some of the pressing questions are thus how much of the ablated material is transported into the mass spectrometer and in what form. Therefore, material redeposition on the near-field tip’s surface from laser ablation of molecular solids was characterized with scanning electron microscopy. The crater profiles were studied by scanning probe microscopy. The results shown in this study demonstrate that there could be as much as 70% of the ablated material deposited on the near-field tip’s surface. The redeposited products were found to be confined to a height of ~50 μm, thus suggesting that most components inside near-field ablation plumes propagate about the same distance for both anthracene and tris(8-hydroxyquinolinato)aluminum. Nanoparticles ablated from craters of ≤1 μm diameter are clearly observed. Furthermore, observation of tips after ablation of an anthracene surface angled at 60° with respect to a horizontal surface shows that the direction of the near-field ablation plume is neither in the direction of the surface normal nor towards the axis of incident laser beam but deflected further away from surface normal.   相似文献   

7.
We report here the resonance effect in femtosecond laser ablation of solid C60 by investigating wavelength and fluence dependence of product ion species. When the ablation laser wavelength is far from the molecular absorption band of C60, we observe both C60-2n+ fragment ions and C60+2n+ cluster ions as well as C60+ parent ion. Delayed ionization of C60 is not significant. When the ablation laser wavelength is near resonant with the molecular absorption, we observe C60+ and some amount of C60-2n+ fragment ions depending on the laser fluence. Delayed ionization of C60 is significant in this case, which indicates high internal energy of C60 molecule. From the observations, we confirm the strong coupling of femtosecond laser energy with C60 molecule when the molecular absorption is high at the ablation laser wavelength.  相似文献   

8.
This paper presents the first evaluation of laser ablation optical emission spectrometry for elemental microanalysis in solids. All the measurements have been performed on aluminum, a matrix in which elements segregate very easily. The lateral resolution obtained is close to 6 μm. It has been evaluated both by making replicas of the small craters formed in aluminum and by making a profile of the intensity distribution of two lines (Al and Cu) across a sharp junction of these two metals. A strong dependence of the measurement reproducibility on the laser energy fluctuations has been observed. Intrinsic reproducibility of the technique has been evaluated at 8% using a stable laser source. The detection limit is around 4 ppm for Mg and 40 ppm for Cu. This surprisingly high sensitivity is mainly attributed to a very efficient coupling between the UV laser beam and the solid surface, leading to crater depths of around 5 μm for a single laser shot. Calibration curves obtained for Mg and Cu using specially fabricated samples demonstrate that the technique is quantitative and not strongly sensitive to the matrix composition. These results demonstrate the very high potential of laser ablation optical emission spectrometry for elemental microanalysis, opening a wide field of applications for this technique.  相似文献   

9.
The dependence of the signal intensity of analyte and matrix ions on laser fluence was investigated for infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry using a flat-top laser beam profile. The beam of an Er : YAG laser (wavelength, 2.94 microm; pulse width, 90 ns) was coupled into a sapphire fiber and the homogeneously illuminated end surface of the fiber imaged on to the sample by a telescope. Three different laser spot sizes of 175, 350 and 700 microm diameter were realized. Threshold fluences of common IR matrices were determined to range from about 1000 to a few thousand J m(-2), depending on the matrix and the size of the irradiated area. In the MALDI-typical fluence range, above the detection threshold ion signals increase strongly with fluence for all matrices, with a dependence similar to that for UV-MALDI. Despite the strongly different absorption coefficients of the tested matrices, varying by more than an order of magnitude at the excitation laser wavelength, threshold fluences for equal spot sizes were found to be comparable within a factor of two. With the additional dependence of fluence on spot size, the deposited energy per volume of matrix at threshold fluence ranged from about 1 kJ mol(-1) for succinic acid to about 100 kJ mol(-1) for glycerol.  相似文献   

10.
Molecular dynamics simulations of matrix‐assisted laser desorption/ionization were carried out to investigate laser pulse width and fluence effects on primary and secondary ionization process. At the same fluence, short (35 or 350 ps) pulses lead to much higher initial pressures and ion concentrations than longer ones (3 ns), but these differences do not persist because the system relaxes toward local thermal equilibrium on a nanosecond timescale. Higher fluences accentuate the initial disparities, but downstream differences are not substantial. Axial velocities of ions and neutrals are found to span a wide range, and be fluence dependent. Total ion yield is only weakly dependent on pulse width, and consistent with experimental estimates. Secondary reactions of matrix cations with analyte neutrals are efficient even though analyte ions are ablated in clusters of matrix. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In mass spectrometry imaging (MSI) applications of infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI), an exogenous ice layer is the gold standard for an energy-absorbing matrix. However, the formation of the ice matrix requires additional time and instrument hardware, so glycerol was investigated herein as an alternative to the ice matrix to potentially improve spatial resolution and ionization, while decreasing experiment time. Glycerol solutions of varying concentrations were sprayed over top of rat liver tissue sections for analysis by IR-MALDESI and compared to the typical ice matrix condition. Additionally, we tested if combining the ice matrix and glycerol matrix would further improve analyses. Matrix conditions were evaluated by comparing ion abundance of six lipid species, the laser ablation spot diameter, and number of METASPACE annotations. The ion abundances were also normalized to the volume of tissue ablated to correct for lower abundance values due to less ablated tissue. It was observed that utilizing a 50% glycerol matrix without ice provides improved spatial resolution with lipid abundances and annotations comparable to the ice matrix standard, while decreasing the time required to complete an IR-MALDESI tissue imaging experiment.  相似文献   

12.
A simple device was designed to measure the acoustic signal accompanying laser ablation. The potential use of this signal for laser ablation-inductively coupled plasma atomic emission was examined. A frequency quadrupled pulsed Nd:YAG laser radiation was used for the ablation of glass, steel and ceramic samples. The relation between the acoustic signal, the laser energy, the analyte signal and the amount of ablated material was studied and evidence of the use of the acoustic signal for the exact focusing of the laser beam onto the sample surface was given. A more intense acoustic signal was observed for the exact focusing with a formation of larger ablation craters in glass and ceramics.  相似文献   

13.
Analytical performance of laser ablation inductively coupled plasma-atomic emission spectrometry (ICP-AES) depends critically on the interaction between the laser light and the sample. The analyte emission line intensity in ICP-AES depends on the quantity of mass ablated. The effect of laser parameters (wavelength, pulse duration, and power density) was investigated for increasing the quantity of ablated mass. For fixed laser beam energy, the ablated mass can change 2 to 3 orders of magnitude by changing the laser beam spot size on the sample. The ablated mass quantity also depends on laser pulse duration and wavelength; and on ambient gas in the sample chamber. The shorter the pulse duration and wavelength, the higher the quantity of ablated mass. By using He in the chamber, the amount of mass increases by a factor of 2 for 30 ns excimer laser ablation and by an order of magnitude for ps-laser ablation.  相似文献   

14.
The effects of laser fluence on ion formation in MALDI were studied using a tandem TOF mass spectrometer with a Nd-YAG laser and alpha-cyano hydrocinnamic acid matrix. Leucine enkephalin ionization and fragmentation were followed as a function of laser fluence ranging from the threshold of ion formation to the maximum available, that is, about 280-930 mJ/mm2. The most notable finding was the appearance of immonium ions at fluence values close to threshold, increasing rapidly and then tapering in intensity with the appearance of typical backbone fragment ions. The data suggest the presence of two distinct environments for ion formation. One is associated with molecular desorption at low values of laser fluence that leads to extensive immonium ion formation. The second becomes dominant at higher fluences, is associated initially with backbone type fragments, but, at the highest values of fluence, progresses to immonium fragments. This second environment is suggestive of ion desorption from large pieces of material ablated from the surface. Arrhenius rate law considerations were used to estimate temperatures associated with the onset of these two processes.  相似文献   

15.
A simple device was designed to measure the acoustic signal accompanying laser ablation. The potential use of this signal for laser ablation-inductively coupled plasma atomic emission was examined. A frequency quadrupled pulsed Nd:YAG laser radiation was used for the ablation of glass, steel and ceramic samples. The relation between the acoustic signal, the laser energy, the analyte signal and the amount of ablated material was studied and evidence of the use of the acoustic signal for the exact focusing of the laser beam onto the sample surface was given. A more intense acoustic signal was observed for the exact focusing with a formation of larger ablation craters in glass and ceramics. Received: 25 June 1998 / Revised: 25 September 1998 / Accepted: 30 September 1998  相似文献   

16.
A pulsed Nd?:?YAG laser was used to generate a plasma from stainless steel targets in air at atmospheric pressure. Laser focusing was found to be an important factor in the ablation process. The influence of focal conditions on spatial profiles of plasma, emission intensity and averaged ablation rate (AAR, μm pulse–1) of stainless steel samples as a function of laser energy are discussed. At high energies and depending on laser beam focusing, ablation efficiency tends to decrease compared to that at lower energies. This effect can be due to plasma shielding and air breakdown. The averaged ablation rate was found to be dependent on the thickness of the sample. This effect results in shielding of the incoming laser beam and redeposition of removed material in the crater. By focusing the beam inside the material free expansion of plasma is allowed, resulting in more efficient erosion of the sample at larger energies. For comparative purposes, data on ablated mass per pulse are presented.  相似文献   

17.
The fragmentation of a potential visible matrix‐assisted laser desorption ionization: Rhodamine 610 was studied under 532 nm visible irradiation, as a function of anion counter ion. It was found that at a fixed fluence, the chloride salt produced fewer fragments than those formed with ClO4? or BF4?. Evidence presented suggests that the degree of fragmentation is inversely proportional to the strength of the contact ion pair in the solid state; that is, more energy is deposited into the radical cation which can lead to fragmentation when less energy is required to separate the ion pair. Similar results were found for salts of Rhodamine 6G. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
This study was designed to examine the mechanism of vasorelaxation induced by pulsed-UV laser. Luminal diameters of rat femoral arteries were measured prior to and following krypton-fluoride excimer laser irradiation of 248 nm in wavelength. The diameter was enlarged to 1.3 times the preirradiated size at 1 or 10 Hz irradiation when the fluence was over 2.0 mj/pulse/mm2, while the diameter reached 1.8 times at 100 Hz with a fluence of 0.8 mj/pulse/mm2. Vasorelaxation by the 100 Hz irradiation was inhibited when the artery was pretreated with methylene blue but was enhanced with superoxide dis-mutase. Pathological analysis revealed an ablation crater and vacuole formation in the vessel at 1 or 10 Hz irradiation, but these changes were not remarkable in the 100 Hz-exposed sample. These findings suggest that vasorelaxation induced by the pulsed UV irradiation at 1 or 10 Hz results from structural alteration of vascular smooth muscle by the ablation crater or vacuolization. On the other hand, a possible mechanism of vasorelaxation at the 100 Hz irradiation is partially related to nitric oxide.  相似文献   

19.
Post ablation ionization (PAI) of neutral atoms from a low alloy steel has been investigated using non-resonant laser ionization in a time-of-flight mass spectrometer. By varying the delay between the ablation and ionization lasers, the velocity distributions of the Ti, V, Cr, Mn and Fe atoms have been determined simultaneously. These distributions have been recorded as a function of ablation laser fluence. The half-range Maxwell-Boltzmann velocity distribution has been used to fit the data and different characteristic temperatures have been determined for the various elements in the sample. The quantitative capability of this method for bulk and surface analysis has been evaluated by calculating the relative sensitivity factors (RSFs) for the various constituent elements. The RSFs for all of the elements are seen to be highly dependent on the delay between the ablating and ionizing lasers. This dependence was reduced by integrating the temporal dependent ion yield, leading to a significant improvement in the calculated RSF values. It was also found that the RSFs were not highly dependent on the power density of the ablation laser beam.  相似文献   

20.
A pulsed Nd : YAG laser was used to generate a plasma from stainless steel targets in air at atmospheric pressure. Laser focusing was found to be an important factor in the ablation process. The influence of focal conditions on spatial profiles of plasma, emission intensity and averaged ablation rate (AAR, μm pulse–1) of stainless steel samples as a function of laser energy are discussed. At high energies and depending on laser beam focusing, ablation efficiency tends to decrease compared to that at lower energies. This effect can be due to plasma shielding and air breakdown. The averaged ablation rate was found to be dependent on the thickness of the sample. This effect results in shielding of the incoming laser beam and redeposition of removed material in the crater. By focusing the beam inside the material free expansion of plasma is allowed, resulting in more efficient erosion of the sample at larger energies. For comparative purposes, data on ablated mass per pulse are presented. Received: 25 January 1999 / Revised: 7 April 1999 / Accepted: 30 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号