首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cyclotetraphosphate ion (P(4)O(12)(4)(-)) as a PPN (PPN = (PPh(3))(2)N(+)) salt reacts with [MCl(cod)](2) (M = Rh, Ir; cod = 1,5-cyclooctadiene) to give the dinuclear complexes (PPN)(2)[[M(cod)](2)(P(4)O(12))], in which the two metal moieties are situated trans to each other with respect to the P(4)O(4) ring in the solid state. In solution, however, these complexes exist as mixtures of trans and cis isomers. On the other hand, the P(4)O(12)(4)(-) ion reacts with 4 equiv of [Rh(cod)(MeCN)(x)](+) cation to give the tetranuclear complex [[Rh(cod)](4)(P(4)O(12))], where the four Rh(cod) fragments are bound to the P(4)O(12) platform alternately on both sides of the P(4)O(4) ring. Dinuclear P(4)O(12) complexes of ruthenium and palladium are also synthesized.  相似文献   

2.
Mesocyclic thioether-aminophosphonite ligands, {-OC10H6(mu-S)C10H6O-}PNC4H8O (2a, 4-(dinaphtho[2,1-d:1',2'-g][1,3,6,2]dioxathiaphosphocin-4-yl)morpholine) and {-OC10H6(mu-S)C10H6O-}PNC4H8NCH3 (2b, 1-(dinaphtho[2,1-d:1',2'-g][1,3,6,2]dioxathiaphosphocin-4-yl)-4-methylpiperazine) are obtained by reacting {-OC10H6(mu-S)C10H6O-}PCl (1) with corresponding nucleophiles. The ligands 2a and 2b react with (PhCN)2PdCl2 or M(COD)Cl2 (M = Pd(II) or Pt(II)) to afford P-coordinated cis-complexes, [{(-OC10H6(mu-S)C10H6O-)PNC4H8X-kappaP}2MCl2] (3a, M = Pd(II), X = O; 3b, M = Pd(II), X = NMe; 4a, M = Pt(II), X = O; 4b, M = Pt(II), X = NMe). Compounds 2a and 2b, upon treatment with [Pd(eta3-C3H5)Cl]2 in the presence of AgOTf, produce the P,S-chelated cationic complexes, [{(-OC10H6(mu-S)C10H6O-)PNC4H8X-kappaP,kappaS}Pd(eta3-C3H5)](CF3SO3) (5a, X = O and 5b, X = NMe). Treatment of 2a and 2b with (PhCN)2PdCl2 in the presence of trace amount of H2O affords P,S-chelated anionic complexes, [{(-OC10H6(mu-S)C10H6O-)P(O)-kappaP,kappaS}PdCl2](H2NC4H8X) (6a, X = O and 6b, X = NMe), via P-N bond cleavage. The crystal structures of compounds 1, 2a, 2b, 4a, and 6a are reported. Compound 6a is a rare example of crystallographically characterized anionic transition metal complex containing a thioether-phosphonate ligand. Most of these palladium complexes proved to be very active catalysts for the Suzuki-Miyaura reaction with excellent turnover number ((TON), up to 9.2 x 10(4) using complex 6a as a catalyst).  相似文献   

3.
4.
Some news thiopyrimidine derivatives and complexes [4-amino-5-nitroso-6-oxo-1,2,3,6-tetrahydro-2-thio-pyrimidine (TANH), its 2-methylthio derivative (MTH), the ammonium salt ofTANH (sTANH) and six new complexes of formulas: Rh(MT)2Cl · 2H2O, Pd(MTH)2Cl2, Pt(MTH)2Cl4, Au(MTH)Cl3 Pd(TANH)2Cl2 and Au(TAN )Cl] have been synthesized and characterized by elemental analysis, IR and1H-NMR spectroscopy techniques. The thermal behaviour of all compounds has also been studied.
Rh(III), Pd(II), Pt(IV) und Au(III) Komplexe von 2-Thiopyrimidin Derivaten
Zusammenfassung Es wurden einige neue Thiopyrimidinderivate und deren Komplexe synthetisiert und mittels Elementaranalyse, IR und1H-NMR charakterisiert: 4-Amino-5-nitroso-6-oxo-1,2,3,6-tetrahydro-2-thio-pyrimidin (TANH), dessen 2-Methylthio-Derivat (MTH), das Ammoniumsalz vonTANH (sTANH) und sechs neue Komplexe der Formeln Rh(MT)2Cl · 2H2O, Pd(MTH)2Cl2, Pt(MTH)2Cl4, Au(MTH)Cl3, Pd(TANH)2Cl2 und Au(TAN )Cl. Das thermische Verhalten der Verbindungen wurde ebenfalls untersucht.
  相似文献   

5.
6.
《Polyhedron》1986,5(6):1183-1190
The Pd(II) and Rh(I) complexes of tetra-acetylethane [H2dahd (3,4-diacetyl-2,4-hexadiene-2,5-diol)] with O,O′-bonded chelates, represented as [M2(O2,O2-dahd)(L2)2][X]m {M = Pd, L2 = (PPh3)2 or bdpe [1,2-bis(diphenylphosphino)ethane], X = BF4 or PF6, m = 2; M = Rh, L = Co, m = 0}, have recently been prepared. [Pd2(O2,O2-dahd)-(PPh3)4][PF6]2 reacts with the potentially bidentate 1,10-phenanthroline (phen) to give the five-coordinate complex [Pd(PPh3)(phen)2][PF6]2 and [Pd(O1,O1-dahd)(phen)]n, the latter of which is rather insoluble in organic solvents. [Pd(O1, O1-dahd)(phen)]n in CH2Cl2 readily transforms to a monomer complex [Pd(C3, O′-dahd)phen)]. These anomalous Pd(II) and Rh(I) complexes of the tetra-acetylethane dianion have been characterized from elemental analyses, conductance, IR, 1H and 13C NMR spectroscopy, magnetic susceptibility and ESR spectroscopy.  相似文献   

7.
lp;&-5q;1 The reactions of [Tl2[S2C=C[C(O)Me]2]]n with [MCl2L2] (1:1) or with [MCl2(NCPh)2] and PPh3 (1:1:2) give complexes [M[eta2-S2C=C[C(O)Me]2]L2] [M = Pt, L2 = 1,5-cyclooctadiene (cod) (1); L2 = bpy, M = Pd (2a), Pt (2b), L = PPh3, M = Pd (3a), Pt (3b)] whereas with MCl2 and QCl (2:1:2) anionic derivatives Q2[M[eta2-S2C=C[C(O)Me]2]2] [M = Pd, Q = NMe4 (4a), Ph3P=N=PPh3 (PPN) (4a'), M = Pt, Q = NMe4 (4b)] are produced. Complexes 1 and 3 react with AgClO4 (1:1) to give tetranuclear complexes [[ML2]2Ag2[mu2,eta2-(S,S')-[S2C=C[C(O)Me]2]2]](ClO4)2 [L = PPh3, M = Pd (5a), Pt (5b), L2 = cod, M = Pt (5b')], while the reactions of 3 with AgClO4 and PPh3 (1:1:2) give dinuclear [[M(PPh3)2][Ag(PPh3)2][mu2,eta2-(S,S')-S2C=C[C(O)Me]2]]]ClO4 [M = Pd (6a), Pt (6b)]. The crystal structures of 3a, 3b, 4a, and two crystal forms of 5b have been determined. The two crystal forms of 5b display two [Pt(PPh3)2][mu2,eta2-(S,S')-[S2C=C[C(O)Me]2]2] moieties bridging two Ag(I) centers.  相似文献   

8.
A novel monomer copper(II) complex [Cu(L)2(SCN)] · ClO4 (1) and a tetranuclear cobalt(II) complex [Co4(L)4(N3)4](OH)4 · 2H2O (2)(L = 3,6-bis-(3,5-dimethylpyrazolyl)-pyridazine) have been synthesized and structurally characterized. Single crystal X-ray analyses show that the Cu(II) atom is in a distorted trigonal bipyramidal coordinated environment consisting of four N atoms of L and one N atom of SCN in complex (1), and the monomer is extended to a 1D chain by the weak intermolecular π...π stacking interactions. In the complex (2), four Co(II) atoms are linked by four bridging azido groups in μ-1,1-N3 (end-on) coordination mode to form a tetranuclear configuration. The fungicidal activity of the title compounds have been studied, and the results show that there are certain activities against several bacteria for the complexes and the ligand. Furthermore, two complexes exhibit blue emission fluoresce in the solid state at room temperature.  相似文献   

9.
The synthesis of some new transition metal complexes with 1,3,4-thiadiazole-2,5-dithiol derivatives (L1 and L2) as new ligands is reported. Each complex was prepared by the reaction of the ligands with the appropriate metal salts (CrCl3, MnCl2·4H2O, FeCl3, CoCl2·6H2O, NiCl2·6H2O, CuCl2·2H2O, RuCl3, RhCl3 and PdCl2). Elemental micro analysis (C.H.N.), UV–Visible spectroscopy, 1H NMR, infrared (IR) spectroscopy, atomic absorption, magnetic susceptibility, continuous variation method and molar conductance techniques were used to characterize the structural formulae of these chelate complexes.  相似文献   

10.
Reactions of 3,4-dimethyl-3',4'-bis(diphenylphosphino)tetrathiafulvalene, o-P2, with [BF(4)](-) salts of Fe(ii), Co(ii), Ni(II), Pd(II), and Pt(II) yield complexes of general formula [M(o-P2)(2)][BF(4)](2). Similar reactions between o-P2 and AgSbF(6) or AgPF(6) produced the salts [Ag(o-P2)(2)][X] where X = [SbF(6)](-) or [PF(6)](-). The resulting compounds were fully characterized by (1)H and (31)P{(1)H} NMR, infrared and electronic absorption spectroscopies, cyclic voltammetry, FAB-MS and single-crystal X-ray diffraction. The paramagnetic Co(II) compound exhibits an S = 3/2 state with large spin-orbit coupling contribution at higher temperatures and an effective S' = 1/2 state below 20 K. Electrochemical studies of the compounds indicate that the two functionalized TTF ligands are not in electronic communication and that they essentially behave as isolated redox centers.  相似文献   

11.
Summary Rhodium(I), iridium(I), palladium(II) and platinum(II) complexes of the phosphinoamide ligands, Ph2PCH2CONHR (R = H, HDPA; Me, MDPA; Ph, PDPA) were prepared and characterized by using conductivity data, i.r., 1H and 31P(H) n.m.r. spectral data. Reaction of the ligands with MCl(PPh3)3 and MCl(CO)(PPh3)2 (M = Rh, Ir) in CH2Cl2 under reflux lead to the formation of MCl(PPh3)2 [Ph2PCH2C(O)NHR] and MCl(CO)(PPh3)[Ph2PCH2–C(O)HNR] respectively. The reaction of either K2MCl4 or cis-MCl2(PPh3)2 affords complexes of the type cis-MCl2[Ph2PCH2C(O)NHR]2 (M = Pd, Pt). A similar product results even from the reaction of phosphinoamides with cis-platin. Possible structures are proposed for the complexes based on their physicochemical data  相似文献   

12.
Conclusion Heating of a solution of the PtCl6 2– ion and an arylmercury compound containing a substituent in the ortho position to mercury leads to the formation of a diaryl (in the case of -naphthylmercury) or arene (in the case of the mesityl or pentamethylphenyl mercury derivatives).Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2374–2376, October, 1986.The authors express their gratitude to A. E. Shilov and A. K. Yatsimirskii for a useful discussion of these results.  相似文献   

13.
Complexation reactions of 5,10,15,20-tetraphenyltetrabenzoporphyrin and transmetallation of its cadmium complex with nickel(II) acetate, Ni(II), Pd(II), and Pt(II) chlorides in dimethylformamide and phenol have been studied. The corresponding Ni(II), Pd(II), and Pt(II) porphyrinates have been synthesized. PtIVBr2 porphyrinate has been obtained by the treatment of Pt(II) 5,10,15,20-tetraphenyltetrabenzoporphyrinate with bromine in chloroform. The obtained compounds have been characterized by elemental analysis, electronic absorption and 1H NMR spectroscopy and mass spectrometry.  相似文献   

14.
The coordination chemistry of chelating silanedithiolato ligands has been investigated on Fe(II), Co(II), Pd(II), Cu(I), and Ag(I). Treatment of M(OAc)(2) (M = Fe, Co, Pd) with cyclotrisilathiane (SSiMe(2))(3) in the presence of Lewis bases resulted in formation of Fe(S(2)SiMe(2))(PMDETA) (1), Fe(S(2)SiMe(2))(Me(3)TACN) (2), Co(S(2)SiMe(2))(PMDETA) (3), and Pd(S(2)SiMe(2))(PEt(3))(2) (4) (PMDETA = N,N,N',N',N' '-pentamethyldiethylenetriamine; Me(3)TACN = 1,4,7-trimethyl-1,4,7-triazacyclononane). The analogous reactions of M(OAc) (M = Cu, Ag) in the presence of PEt(3) gave rise to the dinuclear complexes M(2)[(SSiMe(2))(2)S](PEt(3))(3) [M = Cu (5), Ag (6)]. Complexes were characterized in solution by (1)H, (31)P[(1)H], and (29)Si[(1)H] NMR and in the solid state by single-crystal X-ray diffraction. Mononuclear complexes 1-3 have a four-membered MS(2)Si ring, and these five-coordinate complexes adopt trigonal-bipyramidal (for the PMDETA adducts) or square-pyramidal (for the Me(3)TACN adduct) geometries. In dimer 6, the (SSiMe(2))(2)S(2)(-) silanedithiolato ligand bridges two metal centers, one of which is three-coordinate and the other four-coordinate. The chelating effect of silanedithiolato ligands leads to an increase in the stability of silylated thiolato complexes.  相似文献   

15.
Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at room temperature to populate the lowest-lying (3)CS state population of the emissive (3)MLCT state.  相似文献   

16.
A series of Co(II), Ni(II), Cu(II), and Zn(II) complexes of bi- and tridentate hydrazones were prepared. Ligands L1 and L2 were synthesized by the condensation of 2-mercapto-3-hydrazinoquinoxaline with 2-hydroxy-3-formylquinoline and 3-acetylcoumarin, respectively. The compounds were characterized by various spectro-analytical techniques and magnetic moment studies. The complexes are found to be monomeric and non-electrolytes. In these complexes, [CuL1Cl2] has square pyramidal geometry and others have octahedral. The copper complexes are electrochemically active in the applied potential range.  相似文献   

17.
Group 10 metal(II) complexes of H2tbu-salen (H2tbu-salen = N,N'-bis(3',5'-di-tert-butylsalicylidene)ethylenediamine) and H2tbu-salcn (H2tbu-salcn = N,N'-bis(3',5'-di-tert-butylsalicylidene)-1,2-cyclohexanediamine) containing two 2,4-di(tert-butyl)phenol moieties, [Ni(tbu-salen)] (1a), [Ni(tbu-salcn)] (1b), [Pd(tbu-salen)] (2a), [Pd(tbu-salcn)] (2b), and [Pt(tbu-salen)] (3), were prepared and structurally characterized by X-ray diffraction, and the electronic structures of their one-electron-oxidized species were established by spectroscopic and electrochemical methods. All the complexes have a mononuclear structure with two phenolate oxygens coordinated in a very similar square-planar geometry. These complexes exhibited similar absorption spectra in CH2Cl2, indicating that they all have a similar structure in solution. Cyclic voltammograms of the complexes showed a quasi-reversible redox wave at E1/2 = 0.82-1.05 V (vs Ag/AgCl), corresponding to formation of the relatively stable one-electron-oxidized species. The electrochemically oxidized or Ce(IV)-oxidized species of 1a, 2a, and 3 displayed a first-order decay with a half-life of 83, 20, and 148 min at -20 degrees C, respectively. Ni(II) complexes 1a and 1b were converted to the phenoxyl radicals upon one-electron oxidation in CH2Cl2 above -80 degrees C and to the Ni(III)-phenolate species below -120 degrees C. The temperature-dependent conversion was reversible with the Ni(III)-phenolate ground state and was found to be a valence tautomerism governed by the solvent. One-electron-oxidized 1b was isolated as [Ni(tbu-salcn)]NO3 (4) having the Ni(II)-phenoxyl radical ground state. One-electron-oxidized species of the Pd(II) complexes 2a and 2b were different from those of the Ni(II) complexes, the Pd(II)-phenoxyl radical species being the ground state in CH2Cl2 in the range 5-300 K. The one-electron-oxidized form of 2b, [Pd(tbu-salcn)]NO3 (5), which was isolated as a dark green powder, was found to be a Pd(II)-phenoxyl radical complex. On the other hand, the ESR spectrum of the one-electron-oxidized species of Pt(II) complex 3 exhibited a temperature-independent large g anisotropy in CH2Cl2 below -80 degrees C, while its resonance Raman spectrum at -60 degrees C displayed nu8a of the phenoxyl radical band at 1600 cm-1. These results indicated that the ground state of the Pt(II)-phenoxyl radical species has a large distribution of the radical electron spin at the Pt center. One-electron oxidation of 3 gave [Pt(tbu-salen)]NO3 (6) as a solid, where the oxidation state of the Pt center was determined to be ca. +2.5 from the XPS and XANES measurements.  相似文献   

18.
A new material is proposed for optical sensors for molecular oxygen; the material is obtained by the introduction of Pd(II), Pt(II), and Rh(II) complexes of cationic water-soluble porphyrins into an MF-4SK ion-exchange polymer membrane. The phosphorescence of immobilized metal porphyrins is efficiently quenched by molecular oxygen both in the gas phase and in aqueous solutions. The Stern–Volmer relationships for phosphorescence quenching are linear over the entire range of oxygen concentrations. The new material exhibits good response times and high photochemical stability.  相似文献   

19.
Reaction of the aryl-monophosphine ligand alpha(2)-(diisopropylphosphino)isodurene (1) with the Rh(I) precursor [Rh(coe)(2)(acetone)(2)]BF(4) (coe=cyclooctene) in different solvents yielded complexes of all three common oxidation states of rhodium, depending on the solvent used. When the reaction was carried out in methanol a cyclometalated, solvent-stabilized Rh(III) alkyl-hydride complex (2) was obtained. However, when the reaction was carried out in acetone or dichloromethane a dinuclear eta(6)-arene Rh(II) complex (5) was obtained in the absence of added redox reagents. Moreover, when acetonitrile was added to a solution of either the Rh(II) or Rh(III) complexes, a new solvent-stabilized, noncyclometalated Rh(I) complex (6) was obtained. In this report we describe the different complexes, which were fully characterized, and probe the processes behind the remarkable solvent effect observed.  相似文献   

20.
1,3,5-Diazaphosphorinanes and 1,5,3,7-diazadiphosphacyclooctanes form complexes with Pt(II), Pd(II), Cu(I), and Ag(I) salts. Platinum and palladium are coordinated through phosphorous atoms. In the case of 1,3-diphenyl-5-p-toluidenomethyl-1,3,5-diazaphosphorinane complex formation with platinum and palladium is accompanied by formation of a new polydentate ligand, p-tolylbis-(1,3-di-p-tolyl-1,3,5-diazaphosphorinane-5-yl)methylamine, where the metal is also bonded to phosphorus atoms.DeceasedA. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan' Scientific Center, Russian Academy of Sciences, 420083 Kazan'. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 2, pp. 335–342, February, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号