首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Applied Biochemistry and Biotechnology - This paper presents the quantitative bomb calorimetric high heat values (HHV) for residue samples collected from the Anaerobic Pump (®TAP) and a...  相似文献   

2.
This paper presents the stoichiometry section of a bioenergetics investigation into the biogas plasticization of wastewater sludge using the Anaerobic Pump (TAP). Three residue samples, an input substrate and two residual products, were collected from two side by side operated AD systems, a conventional continuous flow and stirred reactor, and TAP, and submitted for elemental and calorimetric analyses. The elemental compositions of the residues were fitted to a heterotrophic metabolism model [1] for both systems. To facilitate balanced stoichiometric models, a simple “cell” correction computation separates measured residual composites into “real” residual composition and cell growth (C5H7NO2) components. The elemental data and model results show that the TAP stage II residual composition (C1H0.065O0.0027N0.036) was nearly devoid of hydrogen and oxygen, leaving only fixed carbon and cells grown as the composition of the remaining mass. This quantitative evidence supports prior measurements of very high methane yields from TAP stage II reactor during steady-state experiments [2]. All performance parameters derived from the stoichiometric model(s) showed good agreement with measured steady-state averaged values. These findings are strong evidence that plasticization–disruption (TAP) cycle is the mechanism responsible for the observed increases in methane yield. The accuracy achieved by the stoichiometry models qualifies them for thermodynamic analysis to obtain potentials and bioconversion efficiencies. How applied pressure causes matrix conformation changes triggered by a functional consequence (plasticization and disruption) is this study’s essential focus.  相似文献   

3.
Co-digestion of food waste and dairy manure in a two-phase digestion system was conducted in laboratory scale. Four influents of R0, R1, R2, and R3 were tested, which were made by mixing food waste with dairy manure at different ratios of 0:1, 1:1, 3:1, and 6:1, respectively. For each influent, three runs of experiments were performed with the same overall hydraulic retention time (HRT) of 13 days but different HRT for acidification (1, 2, and 3 days) and methanogenesis (12, 11, and 10 days) in two-phase digesters. The results showed that the gas production rate (GPR) of co-digestion of food waste with dairy manure was enhanced by 0.8–5.5 times as compared to the digestion with dairy manure alone. Appropriate HRT for acidification was mainly determined by the biodegradability of the substrate digested. Three-, 2-, and 1-day HRT for acidification were found to be optimal for the digestion of R0, R1, and R2/R3, respectively, when overall HRT of 13 days was used. The highest GPR of 3.97 L/L·day was achieved for R3(6:1) in Run 1 (1 + 12 days), therefore, the mixing ratio of 6:1 and HRT of 1 day for acidification were considered to be the optimal ones and thus recommended for co-digestion of food waste and dairy manure. There were close correlations between degradation of organic matters and GPR. The highest VS removal rate was achieved at the same HRT for acidification and mixing ratio of food waste and dairy manure as GPR in the co-digestion. The two-phase digestion system showed good stability, which was mainly attributed to the strong buffering capacity with two-phase system and the high alkalinity from dairy manure when co-digested with food waste.  相似文献   

4.
Jatropa curcas Linn. (JcL) capsule husk was not recommended as biogas feedstocks. However for biorefinery purpose, several technologies have been conducting to solve this problem. This research reported quantity and quality comparison of Dry Husk Jcl (DH-JcL) in one phase system of batch digester compare with semi continuous digester. HDPE drum of 80 L working volume used as digester with 40 days hydraulic retention time. Feeding of DH-Jcl and solvent water was mixed on concentration of 1: 8. Research conclusion showed that semi continuous digester was better than batch digester. Biogas quality showed that methane content can reach 66.61% to 83.15% and biogas quantity in semi continuous digester can reach 0.016 m3 · kg–1 DH JcL. The result was not in optimize condition yet because ratio number of volatile fatty acids/ alkalinity showed 0.5, it was indicated unstable anaerobic degradation process of DH-JcL.  相似文献   

5.
6.
肉类食品是重要的磷来源,随着磷酸盐在肉制品生产加工中的广泛应用,它在食品中的安全性也备受关注。因此,建立一种肉类食品中磷快速定量测定方法具有重要意义。通过优化肉类样品的微波消解体系,建立了肉类样品磷含量检测的微波消解-连续流动分析方法。研究结果表明,硝酸可以作为微波消解酸体系,证明硝酸用量为6 mL、样品量0.1 g、赶酸温度210℃和消解液稀释倍数100倍时,为较优的微波消解条件。微波消解处理后的样品利用连续流动分析仪进行外标法定量检测。测定结果表明,建立的微波消解-连续流动分析法的检测线性范围为0~4 mg/L,线性相关系数为0.999 4,样品回收率为92.5%~103%,相对标准偏差RSD小于5%(n=10)。方法适用于肉类食品中磷的快速、批量检测。  相似文献   

7.
As a lignocellulose-based substrate for anaerobic digestion, rice straw is characterized by low density, high water absorbability, and poor fluidity. Its mixing performances in digestion are completely different from traditional substrates such as animal manures. Computational fluid dynamics (CFD) simulation was employed to investigate mixing performances and determine suitable stirring parameters for efficient biogas production from rice straw. The results from CFD simulation were applied in the anaerobic digestion tests to further investigate their reliability. The results indicated that the mixing performances could be improved by triple impellers with pitched blade, and complete mixing was easily achieved at the stirring rate of 80 rpm, as compared to 20–60 rpm. However, mixing could not be significantly improved when the stirring rate was further increased from 80 to 160 rpm. The simulation results agreed well with the experimental results. The determined mixing parameters could achieve the highest biogas yield of 370 mL (g TS)?1 (729 mL (g TSdigested)?1) and 431 mL (g TS)?1 (632 mL (g TSdigested)?1) with the shortest technical digestion time (T 80) of 46 days. The results obtained in this work could provide useful guides for the design and operation of biogas plants using rice straw as substrates.  相似文献   

8.
9.
Arsenic present in Traditional Chinese Medicine (TCM) such as uncoated tablets, sugar coated tablet,black pills, capsules/powder, syrup, etc. was determined by using microwave digestion followed by Flow Injection Analysis (FIA) Inductively Coupled Plasma/Mass Spectrometry (ICP/MS). The effect of chloride in the determination of arsenic using FIA ICP/MS was investigated and was found that low level of chloride present do not enhance the 75As signal significantly.  相似文献   

10.
Microalgae farming has been identified as the most eco-sustainable solution for producing biodiesel. However, the operation of full-scale plants is still limited by costs and the utilization of industrial and/or domestic wastes can significantly improve economic profits. Several waste effluents are valuable sources of nutrients for the cultivation of microalgae. Ethanol production from sugarcane, for instance, generates significant amounts of organically rich effluent, the vinasse. After anaerobic digestion treatment, nutrient remaining in such an effluent can be used to grow microalgae. This research aimed to testing the potential of the anaerobic treated vinasse as an alternative source of nutrients for culturing microalgae with the goal of supplying the biodiesel industrial chain with algal biomass and oil. The anaerobic process treating vinasse reached a steady state at about 17 batch cycles of 24 h producing about 0.116 m3CH4 kgCODvinasse ?1. The highest productivity of Chlorella vulgaris biomass (70 mg l?1 day?1) was observed when using medium prepared with the anaerobic digester effluent. Lipid productivity varied from 0.5 to 17 mg l?1 day?1. Thus, the results show that it is possible to integrate the culturing of microalgae with the sugarcane industry by means of anaerobic digestion of the vinasse. There is also the advantageous possibility of using by-products of the anaerobic digestion such as methane and CO2 for sustaining the system with energy and carbon source, respectively.  相似文献   

11.
《Analytical letters》2012,45(17):2623-2636
Experimental variables in continuous flow hydride generation inductively coupled plasma-optical emission spectrometry (CF-HG-ICP-OES) were optimized for determination of bismuth. Concentrations of NaBH4, HCl, and NaOH, flow rates of NaBH4, sample solution, waste and carrier argon, radio frequency power, lengths of reaction, and stripping coils were optimized to obtain lower detection limits. Under optimum conditions, the detection limit was calculated as 0.16 ng mL?1, and the calibration plot was linear between 1.0–50.0 ng mL?1. An improvement in detection limit of 5.75 times by CF-HG-ICP-OES was reached vs. ICP-OES. Relative standard deviation (RSD) for ten replicate measurements of 10.0 ng mL?1 Bi was calculated as 3.9%. Effect of possible interferic ions on Bi signal was evaluated. Accuracy of method was verified by using a standard reference material, SRM 1643e. Results found for Bi were in satisfactory agreement with certified values. The proposed method was then employed to determine trace concentration of Bi in milk samples. Bi amounts in samples were found in the range from lower than the quantitation limit to 14.5 ng mL?1, whereas Bi concentrations were lower than the detection limit in three samples.  相似文献   

12.
Studies of dispersion patterns in nonsegmented streams, flowing through narrow open tubes, show that it is possible to obtain highly reproducible concentration gradients within a sample zone injected into the moving stream. By varying the geometry of the flow path, low, medium and high dispersion patterns can be achieved; the high dispersion pattern forms the basis for a new approach to continuous flow titrimetry. In this type of titration, discrete samples are passed through a gradient device and are then mixed with a continuously flowing stream of titrant of fixed concentration. The new technique has been tested for potentiometric as well as spectrophotometric end-point indication. A simple one-channel system allows titrations to be performed automatically in less than 1 min.  相似文献   

13.
One-stage autothermal thermophilic aerobic digestion (ATAD) is effective for the reduction of volatile solids (VSs) and pathogen in sewage sludges. A novel process of combining mesophilic (<35 °C) anaerobic digestion with a thermophilic (55 °C) aerobic digestion process (AN/TAD) occurred in a one-stage digester, which was designed for aeration energy savings. The efficiency of sludge degradation and variation of sludge properties by batch experiments were evaluated for the AN/TAD digester with an effective volume of 23 L for 30 days compared with conventional thermophilic aerobic digestion (TAD). The AN/TAD system can efficiently achieve sludge stabilization on the 16th day with a VS removal rate of 38.1 %. The AN/TAD system was operated at lower ORP values in a digestion period with higher contents of total organic compounds, volatile fatty acids, protein, and polysaccharide in the soluble phase than those of the TAD system, which can rapidly decreased and had low values in the late period of digestion for the AN/TAD system. In the AN/TAD system, intracellular substances had lysis because of initial hydrolytic acidification.  相似文献   

14.
Silage and dry are the two typical cornstalk forms. Either form could be used as substrate in biogas plants and might be replaced by another when shortage occurred. This study focused on the feeding sequence of these two kinds of feedstocks, aiming to discuss their specific methane potential (SMP). A 15-day hydraulic retention time was chosen for semi-continuous experiments based on the batch test results. In semi-continuous experiments, before and after feedstocks were exchanged, the significantly decreased and comparable SMPs of silage and dry cornstalks indicated that a basis of unstable digestion would result in incomplete methane release from the subsequent digestion. A higher similarity of bacterial community structure and greater quantity of bacteria were shown in acidified silage cornstalk digestion through band similarity analysis. Methanosaetaceae and methanomicrobiales were the predominant methanogens, and aceticlastic methanogenesis was the main route for methane production. The different feeding sequences affected the hydrolysis course and further influenced the methanogenic proliferation. Our work suggests that silage cornstalk digestion should be conducted before dry cornstalk digestion.  相似文献   

15.
Abstract

The treatment of waste water containing three organophosphorous pesticides: diazinon, azinphos-methyl and fenthion by using continuous flow methodologies coupled on line with HPLC-UV detection is presented.

Two continuous flow techniques: completely continuous flow and flow injection, both combined with two separation methods: liquid-liquid extraction and adsorption resins are discussed, as well as the influence of physical and chemical parameters on the analysis.

Adsorption resins seem to be more suitalbe for the treatment of waste water at low pesticide concentraions while liquid-liquid extraction is more selective.  相似文献   

16.
17.
Herein we report for the first time, an advanced continuous flow synthesis of the blockbuster Leishmaniasis drug miltefosine from simple starting materials by a sequence involving four steps of chemical transformation including a continuous mechanochemical step. First three reaction steps were performed in simple tubular reactors in a telescopic mode, while in the last step the product precipitated from the 3rd step was used for a continuous mechanochemical synthesis of miltefosine. When compared to a typical batch protocol that takes 15 h, miltefosine was obtained in 58 % overall yield in flow synthesis mode at the laboratory scale in a total residence time 34 min at synthesis rate of 10 g/hr, which is sufficient to treat 4800 patients per day.  相似文献   

18.
19.

Vinasse, from sugar and ethanol production, stands out as one of the most problematic agroindustry wastes due to its high chemical oxygen demand, large production volume, and recalcitrant compounds. Therefore, the viability of using glycerin as a co-substrate in vinasse anaerobic digestion was tested, to increase process efficiency and biogas productivity. The effect of feeding strategy, influent concentration, cycle length, and temperature were assessed to optimize methane production. Glycerin (1.53% v/v) proved to be a good co-substrate since it increased the overall methane production in co-digestion assays. CH4 productivity enhanced exponentially as influent concentration increased, but when temperature was increased to 35 °C, biogas production was impaired. The highest methane productivity and yield were achieved using fed-batch mode, at 30 °C and at an organic loading rate of 10.1 kg COD m−3 day−1: 139.32 mol CH4 m−3 day−1, 13.86 mol CH4 kg CODapplied, and 15.30 mol CH4 kg CODremoved. Methane was predominantly produced through the hydrogenotrophic route. In order to treat all the vinasse produced by a mid-size sugar and ethanol plant, nine reactors with 7263.4 m3 each would be needed. The energy generated by burning the biogas in boilers would reach approximately 92,000 MW h per season and could save up to US$ 240,000.00 per month in diesel oil demand.

  相似文献   

20.
Thin film flow chemistry using a vortex fluidic device (VFD) is effective in the scalable acylation of amines under shear, with the yields of the amides dramatically enhanced relative to traditional batch techniques. The optimized monophasic flow conditions are effective in ≤80 seconds at room temperature, enabling access to structurally diverse amides, functionalized amino acids and substituted ureas on multigram scales. Amide synthesis under flow was also extended to a total synthesis of local anesthetic lidocaine, with sequential reactions carried out in two serially linked VFD units. The synthesis could also be executed in a single VFD, in which the tandem reactions involve reagent delivery at different positions along the rapidly rotating tube with in situ solvent replacement, as a molecular assembly line process. This further highlights the versatility of the VFD in organic synthesis, as does the finding of a remarkably efficient debenzylation of p‐methoxybenzyl amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号