首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The present work explores, for the first time, the electrocatalytic oxidation of ascorbic acid (AscH2) and its determination in the presence of uric acid (UA) on the in situ activated 4‐nitrophthalonitrile modified carbon paste electrode. The kinetic constant κ for the catalytic reaction for the electrocatalytic oxidation of ascorbic acid, evaluated by cyclic voltammetry, chronoamperometry and RDE voltammetry provided values around 106 L mol?1 s?1. The sensor provided a linear response range for AscH2 and UA from 5.0 up to 120.0 μmol L?1 with detection limits of 1.6 μmol L?1and 1.3 μmol L?1, respectively. The sensor was applied for the simultaneous determination of AscH2 and UA in urine samples and the average recoveries for these samples were 99.8 (±3.1)% and 99.9 (±2.1)%, respectively .  相似文献   

2.
Several problems for the direct electrochemical oxidation of reduced glutathione (GSH) challenge the usage of electroanalytical techniques for its determination. In this work, the electrochemical oxidation of GSH catalyzed by gold nanoparticles electrodeposited on Nafion modified carbon paste electrode in 0.04?mol?L?1 universal buffer solution (pH?7.4) is proved successful. The effect of various experimental parameters including pH, scan rate and stability on the voltammetric response of GSH was investigated. At the optimum conditions, the concentration of GSH was determined using differential pulse voltammetry (DPV) in two concentration ranges: 0.1?×?10?7 to 1.6?×?10?5?mol?L?1 and 2.0?×?10?5 to 2.0?×?10?4?mol?L?1 with correlation coefficients 0.9988, 0.9949 and the limit of detections (LOD) are 3.9?×?10?9?mol?L?1 and 8.2?×?10?8?mol?L?1, respectively, which confirmed the sensitivity of the electrode. The high sensitivity, wide linear range, good stability and reproducibility, and the minimal surface fouling make this modified electrode useful for the determination of spiked GSH in urine samples and in tablet with excellent recovery results obtained.  相似文献   

3.
This work demonstrates gold nanoparticles (AuNPs)/functionalized multiwalled carbon nanotubes (f‐MWCNT) composite film modified gold electrode via covalent‐bonding interaction self‐assembly technique for simultaneous determination of salsolinol (Sal) and uric Acid (UA) in the presence of high concentration of ascorbic acid (AA). In pH 7.0 PBS, the composite film modified electrode exhibits excellent voltammetric response for Sal and UA, while AA shows no voltammetric response. The oxidation peak current is linearly increased with concentrations of Sal from 0.24–11.76 μmol L?1 and of UA from 3.36–96.36 μmol L?1, respectively. The detection limits of Sal and UA is 3.2×10?8 mol L?1 and 1.7×10?7 mol L?1 , respectively.  相似文献   

4.
We report on a carbon paste electrode that was modified with a binuclear manganese(II) complex by the drop-coating method. A study on the mechanism of the electro-oxidation of tryptophan (Trp) at this electrode indicated that it enables Trp to be determined with good sensitivity and selectivity. Second-order derivative linear sweep voltammetry at pH 4.1 revealed that a sensitive anodic peak appears at 812?mV (vs. SCE) whose current is proportional to the concentration of Trp in the concentration range from 0.1 to 1.0???mol?L?1 and 1.0 to 80???mol?L?1, with a detection limit (S/N?=?3) of 0.08???mol?L?1 (60?s of accumulation). The method was applied to the determination of Trp in amino acid injection solutions with satisfactory results.
Figure
The electrochemical behavior of tryptophan at a carbon paste electrode modified with a binuclear manganese(II) complex Mn2(phen)2(p-MBA)4(H2O) was investigated. The modified electrode showed high electrocatalytic activity toward the oxidation of tryptophan and the peak current increases linearly with tryptophan concentration in the range of 0.1 to 80???mol L?1.  相似文献   

5.
An electrochemical biosensor was fabricated by covalent modification of 5-hydroxytryptophan (5-HTP) on the surface of glassy carbon electrode (GCE). The electrode, denoted as 5-HTP/GCE, was characterized by X-ray photoelectron spectroscopy, cyclic voltammetry and differential pulse voltammetry. For comparison, tryptophan modified GCE (TRP/GCE) and serotonin modified GCE (5-HT/GCE) were prepared by the same method. It was found that electrocatalytic ability of these electrodes was in the order of 5-HTP/GCE?>?TRP/GCE?>?5-HT/GCE for the oxidation of dopamine (DA) and 5-HT. The sensor was effective to simultaneously determine DA and 5-HT in a mixture. It can resolve the overlapping anodic peaks into two well-defined voltammetric peaks at 0.24 and 0.39 V (versus SCE). The linear response is in the range of 5.0?×?10?7–3.5?×?10?5 mol L?1 with a detection limit of 3.1?×?10?7 mol L?1 for DA, and in the range of 5.0?×?10?6–3.5?×?10?5 mol L?1 with a detection limit of 1.7?×?10?6 mol L?1 for 5-HT (s/n?=?3), respectively.  相似文献   

6.
A modified carbon paste electrode with SiO2/SnO2/Phosphate/Meldola's blue, SSPMelB, was used to study the electrocatalytic oxidation of ascorbic acid by cyclic voltammetry and chronoamperometry. The adsorbed dye mediates ascorbic acid oxidation at an anodic potential of 0.04 V vs. saturated calomel electrode (SCE) at pH 7.0, in 0.5 mol L?1 solution. The linear range of the sensor is between 4.0×10?7 and 2.0×10?3 mol L?1, with a limit of detection of 4.0×10?7 mol L?1. This novel electrode shows good analytical performance for determination of ascorbic acid in medicine and commercial fruit juice.  相似文献   

7.
Homocysteine (HCy) is an important amino acid containing thiol group and is known as a risk factor in relation to ischemic heart disease and stroke. In this study the electrochemical determination of homocysteine (HCy) has been described using isoprenaline hydrochloride (ISP) as a mediator on multiwall carbon nanotubes modified paste electrode (MWCNTPE). Electrochemical behavior of homocysteine was investigated by cyclic voltarrtmetry and chronoamperometry. The cyclic voltammograms showed that the electrocatalytic oxidation of homocysteine occurs in the presence of ISP on the surface of MWCNTPE at a potential about 640 mV. Also, results showed that the oxidatation peak current of HCy at the modified carbon nanotubes electrode was more than unmodified electrode. The diffusion coefficient and the kinetic parameters including electron transfer coefficient and rate constant of electrocatalytic reaction were determined using electrochemical approaches. Linear sweep voltammetry results showed that electrocatalytic oxidation peak current of HCy had linear dynamic range in the range of 5.0 to 800 μmol L?1 with a detection limit of 3.3 μmol L?1 in pH 3.5 (universal buffer).  相似文献   

8.
《Electroanalysis》2004,16(4):268-274
An amperometric method for the determination of the neurotoxic amino acid β‐N‐oxalyl‐L ‐α,β‐diaminopropionic acid (β‐ODAP) using a screen printed carbon electrode (SPCE) is reported. The electrode material was bulk‐modified with manganese dioxide and used as a detector in flow injection analysis (FIA). The enzyme glutamate oxidase (GlOx) was immobilized in a Nafion‐film on the electrode surface. The performance of the biosensor was optimized using glutamate as an analyte. Optimum parameters were found as: operational potential 440 mV (vs. Ag/AgCl), flow rate 0.2 mL min?1, and carrier composition 0.1 mol L?1 phosphate buffer (pH 7.75). The same conditions were used for the determination of β‐ODAP. The signal was linear within the concentration range 53–855 μmol L?1 glutamate and 195–1950 μmol L?1 β‐ODAP. Detection limits (as 3σ value) for both analytes were 9.12 and 111.0 μmol L?1, respectively, with corresponding relative standard deviations of 3.3 and 4.5%. The biosensor retained more than 73% of its activity after 40 days of on‐line use.  相似文献   

9.
A biomimetic sensor containing the oxo‐bridged dinuclear manganese‐phenanthroline complex incorporated into a cation‐exchange polymeric film deposited onto glassy carbon electrode for detection of sulfite was studied. Cyclic voltammetry at the modified electrode in universal buffer showed a two electron oxidation/reduction of the couple MnIV(μ‐O)2MnIV/MnIII(μ‐O)2MnIII. The sensor exhibited electrocatalytic property toward sulfite oxidation with a decrease of the overpotential of 450 mV compared with the glassy carbon electrode. A plot of the anodic current versus the sulfite concentration for potential fixed (+0.15 V vs. SCE) at the sensor was linear in the 4.99×10?7 to 2.49×10?6 mol L?1 concentration range and the concentration limit was 1.33×10?7 mol L?1. The mediated mechanism was derived by Michaelis? Menten kinetics. The calculated kinetics values were Michaelis? Menten rate constant= =1.33 µmol L?1, catalytic rate constant=6.06×10?3 s?1 and heterogeneous electro‐chemical rate constant=3.61×10?5 cm s?1.  相似文献   

10.
Poly(2-amino-5-(4-pyridinyl)-1,3,4-thiadiazole) (PAPT) modified glassy carbon electrode (GCE) was fabricated and used for the simultaneous determinations of dopamine (DA), uric acid (UA) and nitrite (NO2 ?) in 0.1 mol?L?1 phosphate buffer solution (PBS, pH 5.0) by using cyclic voltammetry and differential pulse voltammetry (DPV) techniques. The results showed that the PAPT modified GCE (PAPT/GCE) not only exhibited electrocatalytic activities towards the oxidation of DA, UA and NO2 ? but also could resolve the overlapped voltammetric signals of DA, UA and NO2 ? at bare GCE into three strong and well-defined oxidation peaks with enhanced current responses. The peak potential separations are 130 mV for DA–UA and 380 mV for UA–NO2 ? using DPV, which are large enough for the simultaneous determinations of DA, UA and NO2 ?. Under the optimal conditions, the anodic peak currents were correspondent linearly to the concentrations of DA, UA and NO2 ? in the ranges of 0.95–380 μmol?L?1, 2.0–1,000 μmol?L?1 and 2.0–1,200 μmol?L?1 for DA, UA and NO2 ?, respectively. The correlation coefficients were 0.9989, 0.9970 and 0.9968, and the detection limits were 0.2, 0.35 and 0.6 μmol?L?1 for DA, UA and NO2 ?, respectively. In 0.1 mol?L?1 PBS pH 5.0, the PAPT film exhibited good electrochemical activity, showing a surface-controlled electrode process with the apparent heterogeneous electron transfer rate constant (k s) of 25.9 s?1 and the charge–transfer coefficient (α) of 0.49, and thus displayed the features of an electrocatalyst. Due to its high sensitivity, good selectivity and stability, the modified electrode had been successfully applied to the determination of analytes in serum and urine samples.  相似文献   

11.
A cobalt oxide nanocluster/overoxidized polypyrrole composite film electrochemical sensing interface was fabricated by two step electrochemical method. The electrochemical properties and electrocatalytic activity of the resulting modified electrode were also studied carefully. The results showed that this modified electrode exhibited good stability, good anti‐interference ability, as well as high electrocatalytic activity to the oxidation of glucose. The linear range for the amperometric determination of glucose was 2.0×10?7–2.4×10?4 mol L?1 and 2.4×10?4–1.4×10?3 mol L?1 with a detection limit of 5.0×10?8 mol L?1 (S/N=3), respectively. The sensitivity was 1024 µA mM?1 cm?2.  相似文献   

12.
Herein, a poly(L-tryptophan) modified glassy carbon electrode (Ptry/GCE) for the determination of maltol is fabricated by electrochemical polymerisation. The electrochemical behaviour of maltol at the Ptry/GCE is studied by cyclic voltammetry (CV). The modified electrode shows excellent electrocatalytic activity towards the oxidation of maltol and the oxidation is a one-proton-one-electron process. In pH 8.0 phosphate buffer solution (PBS), the oxidation peak current of maltol shows a linear relationship with its concentration in the range from 9.00 × 10?5 to 3.75 × 10?3 mol L?1 with a correlation coefficient of 0.9972. The limit of detection is estimated to be 8.00 × 10?6 mol L?1. The novel method shows good selectivity, recovery, reproducibility and great convenience and has been satisfactorily demonstrated in real food sample analysis.  相似文献   

13.
Graphene nanosheets were directly electrodeposited onto a glassy carbon electrode (GCE) from the electrolyte solution containing graphene oxide (GO); the resulting electrode (ED-GO/GCE) was characterized with scanning electron microscopy. A simple and rapid electrochemical method was developed for the determination of theophylline (TP), based on the excellent properties of ED-GO film. The result indicated that ED-GO film-modified GCE exhibited efficient electrocatalytic oxidation for TP with relatively high sensitivity and stability. The electrochemical behavior of TP at ED-GO/GCE was investigated in detail. Under the optimized conditions, the oxidation peak current was proportional to the TP concentration in the range of 8.0?×?10?7 to 6.0?×?10?5 mol?L?1 with the detection limit of 1.0?×?10?7 mol?L?1 (S/N?=?3). The proposed method was successfully applied to green tea samples with satisfactory results.  相似文献   

14.
In this paper, a novel poly(aminosulfonic acid) modified glassy carbon electrode (PASA/GCE) for the determination of Sudan II was fabricated through electrochemical polymerizat ion. The electrochemical behavior of Sudan II at the modified electrode was studied by cyclic voltammetry. Results show that the modified electrode exhibits excellent electrocatalytic activity toward the electrochemical redox reaction of Sudan II. Under optimal experimental conditions, the oxidation peak current is linearly proportional to the concentration of Sudan II in the ranges of 4.0 × 10?8 to 1.0 × 10?6 mol L?1 and 1.0 × 10?6 to 1.2 × 10?5 mol L?1. The linear regression equations are i pa(A) = 2.87c + 3.74 × 10?6, r = 0.9977 and i pa(A) = 0.78c + 6.11 × 10?6, r = 0.9982, respectively, and the detection limit is 4.0 × 10?9 mol L?1. The novel method shows good recovery, reproducibility and sensitivity for the voltammetric determination of Sudan II in food samples.  相似文献   

15.
A new highly sensitive and selective electrochemical levofloxacin sensor based on co‐polymer‐carbon nanotube composite electrode was developed. Taurine and Glutathione were electrochemically co‐polymerized on multiwalled carbon nanotubes modified glassy carbon electrode (Poly(TAU‐GSH)/CNT/GCE) and used as a levofloxacin sensor in pH 6 phosphate buffer solution. The new composite electrode surfaces were characterized by scanning electron microscopy, atomic force microscopy and electrochemical impedance spectroscopy. Under the optimized conditions, two linear segments were obtained for increasing LEV concentrations between 20 nmol L?1‐1 μmol L?1 and 1.5 μmol L?1‐55 μmol L?1 LEV with a detection limit of 9 nmol L?1 using amperometry. Poly(TAU‐GSH)/CNT/GCE exhibited high sensitivity, selectivity with good stability. The new sensor was employed for real samples of LEV tablets and urine. Promising results were obtained with good accuracy which were also in accordance with LC‐MS/MS analysis.  相似文献   

16.
A copper phthalocyanine/multiwalled carbon nanotube film‐modified glassy carbon electrode has been used for the determination of the herbicide glyphosate (Gly) at ?50 mV vs. SCE by electrochemical oxidation using differential pulse voltammetry (DPV). Cyclic voltammetry and electrochemical impedance spectroscopy showed that Gly is adsorbed on the metallic centre of the copper phthalocyanine molecule, with formation of Gly‐copper ion complexes. An analytical method was developed using DPV in pH 7.4 phosphate buffer solution, without any pretreatment steps: Gly was determined in the concentration range of 0.83–9.90 μmol L?1, with detection limit 12.2 nmol L?1 (2.02 μg L?1).  相似文献   

17.
Within this paper, a glassy carbon electrode modified with single‐walled carbon nanotubes (SWCNTs?GCE) was prepared, and employed for the determination of clorsulon (Clo), which is a frequently used veterinary drug against common liver fluke. The comprehensive topographical and electrochemical characterizations of bare GCE and SWCNTs?GCE were performed by atomic force microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Significantly enhanced electrochemical characteristics of SWCNTs?GCE toward a ferrocyanide/ferricyanide redox couple was observed when compared to bare GCE. Further, the prepared sensor was applied for the voltammetric determination of Clo, which was electrochemically investigated for the first time in this work. Voltammetric experiments were performed using square‐wave voltammetry with optimized parameters in phosphate buffer solution, pH 6.8, which was selected as the most suitable medium for the determination of Clo. The corresponding current at approx. +1.1 V increased linearly with Clo concentration within two linear dynamic ranges of 0.75–4.00 μmol L?1 (R2=0.9934) and 4.00–15.00 μmol L?1 (R2=0.9942) with a sensitivity for the first calibration range of 0.76 μA L μmol?1, a limit of detection of 0.19 μmol L?1, and a limit of quantification of 0.64 μmol L?1. The developed method was subsequently applied for quantitative analysis of Clo in milk samples with results proving high repeatability and recovery.  相似文献   

18.
This work reports an in situ cobalt(II) phthalocyanine (CoPc) synthesis on a SiO2/SnO2 (SiSn) matrix surface obtained by the sol‐gel method and its electrocatalytic activity for oxidation of nitrite. A rigid disk electrode with SiSn/CoPc was used to study the electrooxidation of nitrite by the cyclic voltammetric, chronoamperometric techniques and differential pulse voltammetry (DPV). The adsorbed phthalocyanine electrocatalyzed nitrite oxidation at 0.73 V (versus SCE) using the DPV technique. The anodic peak current intensities, plotted from differential pulse voltammograms in 1 mol L?1 KCl for the concentration range 0.002 to 3.85 mmol L?1 of nitrite were linear, with a correlation coefficient of 0.998 and a detection limit of 0.95 μmol L?1.  相似文献   

19.
An electrodeposition oxygen‐incorporated gold‐modified screen‐printed carbon electrode (AuOSPE) was fabricated to determine the sulfite content in hair waving products. The AuOSPE showed an electrocatalytic current for sulfite at +0.4 V (vs. Ag/AgCl). Compared with a gold screen‐printed electrode (AuSPE), the AuOSPE showed a higher electrocatalytic current. The increase in the electrocatalytic current was ascribed to the increase of the oxygen incorporated with gold atom on AuOSPE. The AuOSPE coupled with a flow injection analysis (FIA) system showed excellent oxidation current for sulfite in a 0.1 mol L?1 phosphate buffer solution (PBS), pH 6.0. The linear working range for determining the sulfite content was 0.05 to 1200 mg L?1 (0.625 µmol L?1 to 15.00 mmol L?1) with a calculated detection limit of 0.03 mg L?1 (0.375 µmol L?1) (DL, S/N=3). Relative standard deviations (RSD) of 3.03 %, 2.30 % and 4.26 % were calculated for consecutive injections (n=12) of 20, 300 and 900 mg L?1 sulfite, respectively. The amount of sulfite in two hair waving products was determined by the proposed method and a standard iodometric method. The recoveries ranged from 96.18 % to 105.61 %. The AuOSPE showed high sensitivity, selectivity, stability and reproducibility for sulfite.  相似文献   

20.
We report on a new electrode for the determination of adenosine-5??-triphosphate (ATP). It is based on modified carbon paste electrode that contains an ionic liquid (IL) as the binder. The electrode shows strong electrocatalytic oxidative activity towards ATP at pH 4.5 in giving a well-defined single oxidation peak. The oxidation reaction is adsorption-controlled and due to the presence of the highly conductive IL. The electron transfer rate constant was calculated to be 2.04×10?C3 s?C1, and the surface coverage is 1.11×10?C10 mol cm?C2. Under the selected conditions, the oxidation peak current changes linearly with the concentration of ATP in the range from 5.0 to 1000???mol L?1 and a detection limit of 1.67???mol L?1 (3???) as determined by differential pulse voltammetry. The method displays good selectivity and was applied to the determination of ATP injection samples with satisfactory results.
Figa
An ionic liquid 1-carboxyl-methyl-3-methylimidazolium hexafluorophosphate modified carbon paste electrode was fabricated and used for the sensitive detection adenosine-5??-triphosphate (ATP). The electrochemical oxidation of ATP was greatly enhanced due to the presence of IL in the carbon paste and the electrochemical parameter was calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号