首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An unsteady MHD laminar viscous dissipative fluid flow past a semi-infinite vertical plate with variable surface temperature in the presence of heat source is considered in the present analysis. The present approach transforms the governing boundary layer equations into nondimensional form using the appropriate nondimensional quantities, which is valid in the free convection region. The resulting governing equations are solved numerically using the Crank–Nicolson method, an efficient implicit finite-difference scheme. Numerical results are obtained and presented in the form of local as well as average shearing stress, local and average heat transfer rate, velocity and temperature during the transient period. The present results are compared with the available results in the literature and are found to be in an excellent agreement.  相似文献   

2.
In the present contribution, a numerical treatment is provided to describe unsteady nanofluid flow near a vertical heated wavy surface. A memorable feature of the present work is the investigation of nanofluid flow associated with thermal radiation that acts as a catalyst for heat transfer rates. Likewise, the effectiveness of variable viscosity is examined as it controls fluid flow as well as heat transfer. It is necessary to study heat and mass transfer for complex geometries because predicting heat and mass transfer for irregular surfaces is a topic of fundamental importance, and irregular surfaces frequently appear in many applications, such as flat-plate solar collectors and flat-plate condensers in refrigerators. A simple coordinate transformation from the wavy surface into a flat one is employed. The non-dimensional boundary layer equations that governing both heat transfer and nanofluid flow phenomena along the wavy surface are solved via a powerful numerical approach called the implicit Chebyshev pseudospectral (ICPS) method with Mathematica code. A comparison graph of the current numerical computation and the published data shows a perfect match. Figures depict the effect of various physical parameters on nanofluid velocities, temperature, salt concentration, nanoparticle concentration, skin friction, Sherwood, nanoparticle Sherwood, and Nusselt numbers. According to the numerical results, increasing the variable viscosity parameter value causes a drop in the local skin friction coefficient value and an increase in the steady-state axial nanofluid velocity profile near the wavy surface. Furthermore, as heat radiation is increased, the local Nusselt number decreases but the nanoparticle Sherwood number increases.  相似文献   

3.
A mathematical model for the steady, mixed convection heat and mass transfer along a semi-infinite vertical plate embedded in a micropolar fluid in the presence of Soret and Dufour effects is presented. The non-linear governing equations and their associated boundary conditions are initially cast into dimensionless forms using local similarity transformations. The resulting system of equations is then solved numerically using the Keller-box method. The numerical results are compared and found to be in good agreement with previously published results as special cases of the present investigation. The non-dimensional velocity, microrotation, temperature and concentration profiles are displayed graphically for different values of coupling number, Soret and Dufour numbers. In addition, the skin-friction coefficient, the Nusselt number and Sherwood number are shown in a tabular form.  相似文献   

4.
An incompressible three-dimensional laminar flow in a cross flow direction is described in this work. The term of melting and viscous dissipation is incorporated in the mathematical modeling of present flow problem. The flow expressions are converted into dimensionless equations, which are solved with help of Runge-Kutta scheme. Impact of the emerging parameters on the non-dimensional velocities and temperature and friction-factors and local Nusselt number are examined. The convergence analysis is found for ∈ < 0 and 0 < ∈ ≤ 2. Comparative analysis is made between the obtained results and published data for limiting case. It is explored at the surface that the melting parameter retards the liquid temperature while it enhances the fluid velocity.  相似文献   

5.
The present numerical analysis addresses free convection flow of a viscous incompressible fluid along an inclined semi-infinite flat plate considering the variation of viscosity and thermal diffusivity with temperature. The governing equations are developed with the corresponding boundary conditions are transformed to non-dimensional form using the appropriate dimensionless quantities. Due to complexity in the transformed governing equations, analytical solution will fail to produce a solution. Hence, most efficient and unconditionally stable implicit finite difference method of Crank-Nicolson scheme has been used to solve the governing equations. Numerical results are obtained for different values of the viscosity, thermal conductivity, inclination angle, Grashof number, and Prandtl number. The overall investigation of the variation of velocity, temperature, shearing stress and Nusselt number are presented graphically. To examine the accuracy of the present approximate results, the present results are compared with the available results.  相似文献   

6.
Free convection flow over an isothermal vertical cone immersed in a fluid with variable viscosity and MHD is studied in this paper. Using appropriate variables, the basic equations are transformed into the non-dimensional boundary-layer equations. These equations are then solved numerically using a very efficient implicit finite-difference method known as Crankl-Nicolson scheme. Detailed results for the velocity, temperature, skin friction, and heat transfer rates for a selection of parameter sets consisting of the viscosity parameter, magnetic field parameter, and Prandtl number are discussed. In order to validate our numerical results, the present results are compared with the available work in the literature and are found to be in an excellent agreement.  相似文献   

7.
M. Attalla 《实验传热》2015,28(2):139-155
The heat transfer characteristics in a stagnation region were investigated experimentally for five circular free jets impinging into a heated flat plate. The local temperature distributions are estimated from the thermal images obtained from an infrared camera. To get a precise heat transfer data over the plate, fully developed straight pipe jets were used in this study. Mean jet Reynolds number varied from 1,000 to 45,000, jet-to-plate vertical non-dimensional distance H/D varied from 2 to 6, and the spacing distance jet-to-jet S/D varied from 2 to 8. A geometrical arrangement of one jet surrounded by four jets an in-line array was tested. The results show that the stagnation point Nusselt number is correlated to a jet Reynolds number as Nust∝Re0.61. The average Nusselt number is higher at a separation distance of 2D for three cases of spacing distances, S/D = 2, 4, and 6.  相似文献   

8.
The flow of a magnetite-H_2O nanofluid has been considered among two rotating surfaces,assuming porosity in the upper plate. Furthermore, the lower surface is considered to move with variable speed to induce the forced convection. Centripetal as well as Coriolis forces impacting on the rotating fluid are likewise taken into account. Adequate conversions are employed for the transformation of the governing partial-differential equations into a group of non-dimensional ordinary-differential formulas. Numerical solution of the converted expressions is gained by means of the shooting technique. It is theoretically found that the nanofluid has less skin friction and advanced heat transport rate when compared with the base fluid. The effect of rotation causes the drag force to elevate and reduces the heat transport rate. Streamlines are portrayed to reveal the impact of injection/suction.  相似文献   

9.
Forced convection heat transfer characteristics of a torus (maintained at a constant temperature) immersed in a streaming fluid normal to the plane of the torus are studied numerically. The governing equations, namely, continuity, momentum and thermal energy in toroidal coordinate system, are solved using a finite difference method over ranges of parameters (aspect ratio of torus, 1.4 ≤ Ar ≤ 20; Reynolds number, 20 ≤ Re ≤ 40; Prandtl number, 0.7 ≤ Pr ≤ 10). Over the ranges of parameters considered herein, the nature of flow is assumed to be steady. In particular, numerical results elucidating the influence of Reynolds number, Prandtl number and aspect ratio on the isotherm patterns, local and average Nusselt numbers for the constant temperature (on the surface of the torus) boundary condition. As expected, at large aspect ratio the flow pattern and heat transfer are similar to the case of flow and heat transfer over a single circular cylinder.  相似文献   

10.
Boundary layer stagnation point flow of Casson fluid over a Riga plate of variable thickness is investigated in present article. Riga plate is an electromagnetic actuator consists of enduring magnets and gyrated aligned array of alternating electrodes mounted on a plane surface. Physical problem is modeled and simplified under appropriate transformations. Effects of thermal radiation and viscous dissipation are incorporated. These differential equations are solved by Keller Box Scheme using MATLAB. Comparison is given with shooting techniques along with RangeKutta Fehlberg method of order 5. Graphical and tabulated analysis is drawn. The results reveal that Eckert number,radiation and fluid parameters enhance temperature whereas they contribute in lowering rate of heat transfer. The numerical outcomes of present analysis depicts that Keller Box Method is capable and consistent to solve proposed nonlinear problem with high accuracy.  相似文献   

11.
Here magnetohydrodynamic (MHD) two-dimensional (2D) flow of an incompressible Burgers material bounded by a permeable stretched surface is addressed. The boundary layer flow equations are modelled. Heat transfer is discussed for power law heat flux at the surface and heat source. Convergent series solutions are constructed. Clarification of different emerging variables is presented through graphs of velocity, temperature and local Nusselt number. The present solutions are matched with the available published work in a limiting case.  相似文献   

12.
This paper investigate the effect of slip boundary condition, thermal radiation, heat source, Dufour number,chemical reaction and viscous dissipation on heat and mass transfer of unsteady free convective MHD flow of a viscous fluid past through a vertical plate embedded in a porous media. Numerical results are obtained for solving the nonlinear governing momentum, energy and concentration equations with slip boundary condition, ramped wall temperature and ramped wall concentration on the surface of the vertical plate. The influence of emerging parameters on velocity,temperature and concentration fields are shown graphically.  相似文献   

13.
An analysis is performed to study the influence of local thermal non-equilibrium (LTNE) on unsteady MHD laminar boundary layer flow of viscous, incompressible fluid over a vertical stretching plate embedded in a sparsely packed porous medium in the presence of heat generation/absorption. The flow in the porous medium is governed by Brinkman-Forchheimer extended Darcy model. A uniform heat source or sink is presented in the solid phase. By applying similarity analysis, the governing partial differential equations are transformed into a set of time dependent non-linear coupled ordinary differential equations and they are solved numerically by Runge-Kutta Fehlberg method along with shooting technique. The obtained results are displayed graphically to illustrate the influence of different physical parameters on the velocity, temperature profile and heat transfer rate for both fluid and solid phases. Moreover, the numerical results obtained in this study are compared with the existing literature in the case of LTE and found that they are in good agreement.  相似文献   

14.
The steady-state ignition of a catalytic vertical plate immersed in a combustible gas is analysed using asymptotic and numerical techniques. The analysis is restricted to the case where the catalytic activity is assumed to be on one lateral surface of the plate, causing an asymmetrical heat transfer distribution. The influence of the transversal and the longitudinal heat conduction effects through the plate are clarified, showing well defined ignition and extinction conditions (an S-shaped curve) for high activation energy. The catalytic ignition is easier to achieve as the value of the non-dimensional longitudinal thermal conductance of the plate increases in the thermally thin wall regime, while the converse is true for the thermally thick wall regime.  相似文献   

15.
The Lie group method is applied to present an analysis of the magneto hydro-dynamics(MHD) steady laminar flow and the heat transfer from a warm laminar liquid flow to a melting moving surface in the presence of thermal radiation.By using the Lie group method,we have presented the transformation groups for the problem apart from the scaling group.The application of this method reduces the partial differential equations(PDEs) with their boundary conditions governing the flow and heat transfer to a system of nonlinear ordinary differential equations(ODEs) with appropriate boundary conditions.The resulting nonlinear system of ODEs is solved numerically using the implicit finite difference method(FDM).The local skin-friction coefficients and the local Nusselt numbers for different physical parameters are presented in a table.  相似文献   

16.
The steady magnetohydrodynamic (MHD) mixed convection boundary layer flow of a viscous and electrically conducting fluid near the stagnation-point on a vertical permeable surface is investigated in this study. The velocity of the external flow and the temperature of the plate surface are assumed to vary linearly with the distance from the stagnation-point. The governing partial differential equations are first transformed into ordinary differential equations, before being solved numerically by a finite-difference method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. Both assisting and opposing flows are considered. It is found that dual solutions exist for both cases, and the range of the mixed convection parameter for which the solution exists increases with suction.  相似文献   

17.
This paper presents a numerical solution for the steady mixed convection magnetohydrodynamic (MHD) flow of an electrically conducting micropolar fluid over a porous shrinking sheet. The velocity of shrinking sheet and magnetic field are assumed to vary as power functions of the distance from the origin. A convective boundary condition is used rather than the customary conditions for temperature, i.e., constant surface temperature or constant heat flux. With the aid of similarity transformations, the governing partial differential equations are transformed into a system of nonlinear ordinary differential equations, which are solved numerically, using the variational finite element method (FEM). The influence of various emerging thermophysical parameters, namely suction parameter, convective heat transfer parameter, magnetic parameter and power index on velocity, microrotation and temperature functions is studied extensively and is shown graphically. Additionally the skin friction and rate of heat transfer, which provide an estimate of the surface shear stress and the rate of cooling of the surface, respectively, have also been computed for these parameters. Under the limiting case an analytical solution of the flow velocity is compared with the present numerical results. An excellent agreement between the two sets of solutions is observed. Also, in order to check the convergence of numerical solution, the calculations are carried out by reducing the mesh size. The present study finds applications in materials processing and demonstrates excellent stability and convergence characteristics for the variational FEM code.  相似文献   

18.
There are a lot of industrial applications of structured packing. Distillation columns are one of the examples where the liquid flows over the corrugated surface as a thin film to provide a good mass-transfer surface between the liquid and vapor phase. The purpose of the present paper is to study the hydrodynamics and the heat-mass transfer of the liquid film spreading down the corrugated surfaces when the corrugation amplitude is comparable with Nusselt’s film thickness (the amplitude corresponds to a small texture of the structured packing). As a result, a nonlinear type diffusion equation is obtained to describe the evolution of the film thickness profile. The nonlinear diffusion coefficient is obtained for three cases: a smooth inclined plate, a corrugated plate with large ribs, and an inclined corrugated plate with small ribs. The equations are solved numerically. As a result, it has been obtained that the small texture significantly increases the rate of the film thickness evolution in comparison with a smooth plate. To obtain the nonlinear diffusion coefficient in the case of a small texture, the hydrodynamics of the film flow over an inclined corrugated surface are studied. The viscosity, inertia, and surface tension forces are taken into account. The calculations were carried out on the basis of the Navier-Stokes equations. The influence of the microcorrugations on both the heat transfer from the wall and the mass transfer through the free surface was investigated.  相似文献   

19.
本文对R134a在板式换热器内的凝结换热特性进行了实验研究,通过测量换热器中冷却水及板壁温度获得了局部凝结换热系数随蒸气干度、质量流量及热流密度的变化关系.实验结果表明,凝结换热系数随着蒸气干度增加而增加.文章还将实验结果与部分文献数据进行了比较与分析.本文的研究为换热准则关系式的发展提供了实验数据.  相似文献   

20.
An analysis of thermal stratification in a transient free convection of nanofluids past an isothermal vertical plate is performed. Nanofluids containing nanoparticles of aluminium oxide, copper, titanium oxide and silver having volume fraction of the nanoparticles less than or equal to 0.04 with water as the base fluid are considered. The governing boundary layer equations are solved numerically. Thermal stratification effects and volume fraction of the nanoparticles on the velocity and temperature are represented graphically. It is observed that an increase in the thermal stratification parameter decreases the velocity and temperature profiles of nanofluids. An increase in the volume fraction of the nanoparticles enhances the temperature and reduces the velocity of nanofluids. Also, the influence of thermal stratification parameter and the volume fraction of the nanoparticles of local as well as average skin friction and the rate of heat transfer of nanofluids are discussed and represented graphically. The results are found to be in good agreement with the existing results in literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号