首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three different forms of carbon, i.e., multi-walled carbon nanotubes (CNTs), single-walled CNTs, and soot, were decorated with gold nanoparticles by a new method. In this method C10H8 ions transfer electrons to the CNTs or soot. These electrons on the carbon surface can then reduce Au3+ species to form supported Au nanoparticles with a narrow particle size distribution. Thermogravimetric/differential thermal analyses (TG/DTA), XRD, Raman, and TEM show that naphthalene molecules remain trapped inside the Au nanoparticles and can only be removed by treatment at ca. 300 °C. Remarkable effect of the Au nanoparticles on the oxidation of carbon by O2 is also observed by TG/DTA, i.e., on-set oxidation temperature and activation energy (E a). It is shown that as the Au particle size decreases from 25 to 2 nm a linear decrease of the oxidation temperature is observed. Au particles larger than 25 nm do not produce any significant effect on carbon oxidation. These results are discussed in terms of spillover catalytic effect where Au nanoparticles activate O2 molecules to produce active oxygen species which oxidize the different carbon supports.  相似文献   

2.
Self-assembled nanohybrids of a 1,10-phenanthroline derivative and Au nanoparticles exhibit different optoelectronic properties, as a consequence of the different arrangements of the nanoparticles on the surface of the different-sized phenanthroline scaffolds.  相似文献   

3.
The rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroconversion in humans is crucial for suitable infection control. In this sense, many studies have focused on increasing the sensibility, lowering the detection limits and minimizing false negative/positive results. Thus, biosensors based on nanoarchitectures of conducting polymers are promising alternatives to more traditional materials since they can hold improved surface area, higher electrical conductivity and electrochemical activity. In this work, we reported the analytical comparison of two different conducting polymers morphologies for the development of an impedimetric biosensor to monitor SARS-CoV-2 seroconversion in humans. Biosensors based on polypyrrole (PPy), synthesized in both globular and nanotubular (NT) morphology, and gold nanoparticles are reported, using a self-assembly monolayer of 3-mercaptopropionic acid and covalently linked SARS-CoV-2 Nucleocapsid protein. First, the novel hybrid materials were characterized by electron microscopy and electrochemical measurements, and the biosensor step-by-step construction was characterized by electrochemical and spectroscopic techniques. As a proof of concept, the biosensor was used for the impedimetric detection of anti-SARS-CoV-2 Nucleocapsid protein monoclonal antibodies. The results showed a linear response for different antibody concentrations, good sensibility and possibility to quantify 7.442 and 0.4 ng/mL of monoclonal antibody for PPy in the globular and NT morphology, respectively. The PPy-NTs biosensor was able to discriminate serum obtained from COVID-19 positive versus negative clinical samples and is a promising tool for COVID-19 immunodiagnostic, which can contribute to further studies concerning rapid, efficient, and reliable detections.  相似文献   

4.
Wei Sun  Peng Qin  Ruijun Zhao  Kui Jiao 《Talanta》2010,80(5):2177-138
In this paper a carbon ionic liquid electrode (CILE) was fabricated by using ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM]EtOSO3) as modifier and further gold nanoparticles were in situ electrodeposited on the surface of CILE. The fabricated Au/CILE was used as a new platform for the immobilization of hemoglobin (Hb) with the help of a Nafion film. Electrochemical experimental results indicated that direct electron transfer of Hb was realized on the surface of Au/CILE with a pair of well-defined quasi-reversible redox peaks appeared. The formal peak potential (E0) was obtained as −0.210 V (vs. SCE) in pH 7.0 phosphate buffer solution (PBS), which was the characteristic of Hb heme Fe(III)/Fe(II) redox couple. The fabricated Nafion/Hb/Au/CILE showed excellent electrocatalytic activity to the reduction of trichloroacetic acid (TCA) and the reduction peak current was in proportional to TCA concentration in the range from 0.2 to 18.0 mmol/L with the detection limit as 0.16 mmol/L (S/N = 3). The proposed electrode showed good stability and reproducibility, and it had the potential application as a new third-generation electrochemical biosensor.  相似文献   

5.
Reversible assembly of gold nanoparticles controlled by the homodimerization and folding of an immobilized de novo designed synthetic polypeptide is described. In solution at neutral pH, the polypeptide folds into a helix-loop-helix four-helix bundle in the presence of zinc ions. When immobilized on gold nanoparticles, the addition of zinc ions induces dimerization and folding between peptide monomers located on separate particles, resulting in rapid particle aggregation. The particles can be completely redispersed by removal of the zinc ions from the peptide upon addition of EDTA. Calcium ions, which do not induce folding in solution, have no effect on the stability of the peptide decorated particles. The contribution from folding on particle assembly was further determined utilizing a reference peptide with the same primary sequence but containing both D and L amino acids. Particles functionalized with the reference peptide do not aggregate, as the peptides are unable to fold. The two peptides, linked to the nanoparticle surface via a cysteine residue located in the loop region, form submonolayers on planar gold with comparable properties regarding surface density, orientation, and ability to interact with zinc ions. These results demonstrate that nanoparticle assembly can be induced, controlled, and to some extent tuned, by exploiting specific molecular interactions involved in polypeptide folding.  相似文献   

6.
Films consisting of pristine multi-walled carbon nanotubes (MWCNTs) and nitrogen-doped MWCNTs (N-MWCNTs) were fabricated by means of chemical vapor deposition and chemically decorated with gold nanoparticles (AuNPs). Optical microscopy and image analysis reveal that the deposited AuNPs have diameters of 50–200 nm and 100–400 nm, respectively. The AuNP-modified films of MWCNTs and of N-MWCNTs were initially investigated with respect to their response to the ferro/ferricyanide redox system. The N-MWCNTs/AuNPs exhibit lower detection limit (0.345 μM) for this redox system compared to that of MWCNTs/AuNPs (0.902 μM). This is probably due to the presence of nitrogen that appears to enhance the electrocatalytic activity of MWCNTs. The findings demonstrate that the electrochemical responses of both films are distinctly enhanced upon deposition of AuNPs on their surfaces. The detection limits of MWCNTs/AuNPs and N-MWCNTs/AuNPs systems are lower by about 43 % and 27 %, respectively, compared to films not modified with AuNPs. The electrocatalytic activity of the films towards the oxidation of ascorbic acid (AA), uric acid (UA), and dopamine (DA) was studied. The findings reveal that N-MWCNTs/AuNPs represent a powerful analytical tool that enables simultaneous analysis of AA, UA, and DA in a single experiment.
Figure
Films consisting of pristine and nitrogen-doped multi-walled carbon nanotubes were fabricated, decorated with gold nanoparticles, and their electrocatalytic activity towards oxidation of ascorbic acid, uric acid, and dopamine was investigated. An enhanced electrocatalytic activity was observed on modified nitrogen-doped carbon nanotubes, where all biomolecules can be simultaneously analyzed.  相似文献   

7.
A glycated hemoglobin (HbA1c) biosensor with high performance has been constructed in this work. Here the fructosyl amino acid oxidase was immobilized onto a pre-functionalized indium tin oxide glass with titania nanotubes decorated with gold nanoparticles. The property of nanocomposite was characterized by transmission electromicroscopy, scanning electron microscopy, electrochemistry and spectroscopy. Under the optimum conditions, fructosyl valine was detected by this biosensor. It exhibited a linear detection range from 4.0 × 10−9 M to 7.2 × 10−7 M, and a limit of detection for 3.8 × 10−9 M at the signal-to-noise ratio of 3. Thus the HbA1c level in whole blood samples of healthy individuals or diabetic patients were evaluated with designed biosensor after pre-treatment of hydrolysis. The results of our detection were closely consistent with that of the standard method. At the same time, our biosensor has some advantages including high sensitivity, disposable usage and low cost, which implies its great promising application in point-of-care testing of HbA1c.  相似文献   

8.
Gas sensors based on oxygen plasma functionalised MWCNTs and plasma-treated nanotubes decorated either with gold nanoclusters or tin oxide nanoparticles were evaluated for the detection of NO2, CO and ethylene. The sensor active layers were deposited by airbrushing onto micro-machined silicon transducers. Sensitivity, linearity, selectivity, response and recovery times and humidity effect were studied. XPS and TEM were employed to analyse the gas sensitive films. Among the different sensors tested, those based on tin oxide decorated MWCNTs showed the highest sensitivity to NO2 (at ppb level) and the lowest humidity cross-sensitivity when operated at room temperature.  相似文献   

9.
Magnetron sputtering and gas aggregation source (GAS) approaches were combined for the preparation of columnar TiO2 structures decorated with PdO nanoparticles (NPs). The totally solvent-free synthesis approach provides good control of surface coverage, size, morphology, and stoichiometry of PdO NPs in comparison to wet chemical synthesis methods. X-ray photoelectron spectroscopy (XPS) analysis showed that the heat treatment led to the formation of a mixed oxide state PdO/PdO2 on the TiO2 layer. A steady equilibrium between PdO (oxidation by free and adsorbed ?OH) and PdO2 (reduced by trapped photogenerated electrons) phases under UV irradiation seems to provide an efficient electron-hole pair separation. Such robust PdO–TiO2 thin films have a strong potential for use as photocatalytic and self-cleaning windows or similar out-door technical surfaces.  相似文献   

10.
Uniform polystyrene (PS) microspheres prepared for deposition of metallic nanoparticles were synthesized using the surfactant-free emulsion polymerization based on styrene/potassium persulfate/water (St/KPS/H2O) system. Owing to the presence of sulfate groups, the PS microspheres can be utilized to reduce gold nanoparticles without adding extra reducing agent into the mixture. The synthesis and characterization of metal-polystyrene nanocomposites are reported, and a possible reduction mechanism is proposed: by heating the aqueous solution in the presence of metal ions and PS, the sulfate chain end groups of the PS hydrolyzed and transformed to hydroxyl groups firstly. The hydroxyl groups function as a reducing agent, and carboxylic groups provide a site to adsorb the gold nuclei. The Au nanoparticles grow in size with the coalescence and dissolving of nuclei through the Ostwald ripening process. The PS microspheres and Au nanoparticles were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, X-ray power diffraction, and thermal gravimetric analysis.  相似文献   

11.
Shimojo K  Niide T  Taguchi T  Naganawa H  Kamiya N  Goto M 《The Analyst》2012,137(10):2300-2303
We report a one-pot biological approach to fabricate gold nanoparticle (AuNP)-ZZ domain conjugates using peptide-functionalized proteins that can simultaneously direct both biomineralization and surface modification of AuNPs. In addition, immuno-AuNPs are readily prepared through the specific binding of antibodies to the ZZ domain on the AuNPs.  相似文献   

12.
13.
A non-enzymatic impedimetric glucose sensor was fabricated based on the adsorption of gold nanoparticles (GNPs) onto conductive polyaniline (PANI)-modified glassy carbon electrode (GCE). The modified electrode (GCE/PANI/GNPs) was characterized by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The determination of glucose concentration was based on the measurement of EIS with the mediation of electron transfer by ferricyanide ([Fe(CN)6]3?). The [Fe(CN)6]3? is reduced to ferrocyanide ([Fe(CN)6]4?), which in turn is oxidized at GCE/PANI/GNPs. An increase in the glucose concentration results in an increase in the diffusion current density of the [Fe(CN)6]4? oxidation, which corresponds to a decrease in the faradaic charge transfer resistance (R ct). A wide linear concentration range from 0.3 to 10 mM with a lower detection limit of 0.1 mM for glucose was obtained. The proposed sensor shows high sensitivity, good reproducibility, and stability. In addition, the sensor exhibits no interference from common interfering substances such as ascorbic acid, acetaminophen, and uric acid.  相似文献   

14.
采用一种温和且有效的方法,将聚丙烯酸非共价修饰到碳纳米管上,并以其为模板,在碳纳米管上原位均匀的生长铜纳米粒子,制备了铜/聚丙烯酸/碳纳米管(Cu/PAA/CNT)纳米复合材料,并以此材料构建了一种新型的非酶H2O2传感器,研究了其对H2O2的电催化行为。结果表明:铜纳米粒子较均匀的生长在碳纳米管上,制备的纳米复合材料修饰到电极表面对H2O2表现出良好的电流响应,可实现对H2O2的灵敏测定,其响应电流与H2O2的浓度在1.9×10-6~8.0×10-4mol/L范围内呈良好的线性关系,检测限达6.3×10-7mol/L。  相似文献   

15.
Nanocompatible chemistry which utilizes a novel nontoxic phosphino amino acid as a reducing agent has resulted in the development of therapeutically useful gold nanoparticles under biologically benign media. Stabilization of gold nanoparticles by the edible gum arabic matrix has provided an effective pathway toward in vivo stable target-specific gold nanoparticles.  相似文献   

16.
17.
The development of new methods for the facile synthesis of hybrid nanomaterials is of great importance due to their importance in nanotechnology. In this work, we report a new method to deposit Au nanoparticles on the surface of single-walled carbon nanotubes (SWCNTs). Our approach consists of a one pot synthesis in which Au nanoparticles are generated in the presence of a photoreducing agent (Irgacure-2959) and carboxyl or polymer-functionalized SWCNTs (f-SWCNTs). We have observed that when carbon nanotubes are functionalized with polymers containing pendant amino groups, the latter can act as specific nucleation sites for well-dispersed deposition of Au nanoparticles. The surface coverage of the Au nanoparticles can be observed by transmission electron spectroscopy. These observations are compared to that of carboxyl functionalized SWCNTs, in which less surface coverage was observed. The f-SWCNT/Au nanocomposites were also characterized by UV-vis, infrared, and Raman spectroscopy and thermogravimetric analysis (TGA). This facile and effective route can be implemented to deposit gold nanoparticles on other surface-functionalized carbon nanotubes.  相似文献   

18.
Inverse microemulsion system of cetyltrimethylammonium bromide (CTAB) molecules is utilized for virtually monodispersed and controlled growth of HCl polyaniline (PANI) nanoparticles at room temperature (ca. 300 K). The templated electroconductive polymer reveals lamellar crystalline structure under X-ray diffraction signifying marked sub-chain alignment of the polymerized nanoparticles. The nanostructured polymer has spherically symmetric morphology in a size range of 2.0 nm to 6.0 nm under electron microscope examination. Gel permeation chromatography gives polydispersity index of 1.02 for nanostructured polymer in agreement with the size monodispersity transpired by electron microscopy. The d.c. electrical conductivity σ dc of PANI at room temperature is 10.11 S/cm whereas the variation of conductivity with temperature in the range 227–303 K reveals that the conducting mechanism can be considered as three-dimensional variable-range-hopping (3D-VRH). UV-Vis spectrum indicates two broad absorption bands due to polaron formation that contributes to enhanced electrical conductivity of the polymer. The fundamental absorption edge in the polymer is formed by direct allowed transitions to the extent that the optical band gap value was found to be 2.35 eV. The crystalline nanostructure and homogeneous doping attained in the cationic template of amphiphile are argued as contributing factors to the enhanced conductivity of the polymer.  相似文献   

19.
Previously, we have prepared nanoflake-like tin disulfide (SnS2) and used for the immobilization of proteins and biosensing. We have now modified an electrode with a composite consisting of nanoflake-like SnS2 decorated with gold nanoparticles (Au-NPs) and have immobilized glucose oxidase (GOx) on its surface in order to study its direct electrochemistry. Scanning electron microscopy, electrochemical impedance spectroscopy, Fourier transform IR spectroscopy and cyclic voltammetry were used to examine the interaction between GOx and the AuNP-SnS2 film. It is shown that the composite film has a larger surface area and offers a microenvironment that facilitates the direct electron transfer between enzyme and electrode surface. The immobilized enzyme retains its bioactivity and undergoes a surface-controlled, reversible 2-proton and 2-electron transfer reaction, with an apparent electron transfer rate constant of 3.87 s -1. Compared to the nanoflake-like SnS2-based glucose sensor, the GOx-based biosensor exhibits a lower detection limit (1.0 :M), a better sensitivity (21.8 mA?M -1 ?cm -2), and a wider linear range (from 0.02 to 1.3 mM). The sensor displays excellent selectivity, good reproducibility, and acceptable stability. It was successfully applied to reagentless sensing of glucose at ?0.43 V.
Figure
The AuNPs decorated nanoflake-like SnS2 (AuNPs–SnS2) composite is for the first time prepared and used to construct novel glucose biosensor nanoflake-like SnS2 was firstly synthesized and SEM image of the nanoflake-like SnS2 (a) and TEM images of the nanoflake-like SnS2 (b), AuNPs (c) and AuNPs–SnS2 (d) are shown in above figure.  相似文献   

20.
Wang J  Yang Z  Wang X  Yang N 《Talanta》2008,76(1):85-90
Tris(2,2'-bipyridyl) ruthenium(II) (Ru(bpy)(3)(2+))-roxithromycin based electrochemiluminescence (ECL) was enhanced greatly by gold nanoparticles 10 nm in diameter. Capillary electrophoresis (CE) was coupled with the resultant ECL system as a detector for roxithromycin. This ECL emission is explained by the coreactant mechanism where roxithromycin behaves as a coreactant to generate strong reducing species and gold nanoparticles act as "floating nanoelectrodes". The reaction of Ru(bpy)(3)(3+) with the generated strong reducing species on the Pt working electrode as well as on "floating nanoelectrodes" releases Ru(bpy)(3)(2+*), resulting in enhancement of ECL emission. The selectivity of this detection system towards roxithromycin was examined by CE. Under the optimized conditions, the intensity of ECL emission varies linearly with the concentration of roxithromycin from 24 nM to 0.24 mM. The detection limit is 8.4 nM, while without adding gold nanoparticles it is only 84 nM. The detection of roxithromycin in pharmaceutical and urine samples was also performed by the proposed CE-ECL method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号