首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The direct electrochemistry of catalytically active cytochrome C (Cyt c) adsorbed together with a 3-dimensional network of chemically synthesized graphene on glassy carbon electrode has been readily obtained in aqueous phosphate buffer. Direct electrical communication between the redox center of Cyt c and the modified graphene-based electrode was established. The modified electrode was employed as a high-performance hydrogen peroxide (H2O2) biosensor. The Cyt c present in modified electrode exhibited a pair of quasi-reversible redox peaks with a midpoint potential of ?0.380 and ?0.2 V, cathodic and anodic, respectively. Investigations into the electrocatalytic activity of the modified electrode upon hydrogen peroxide exposure revealed a rapid amperometric response (5 s). Under optimized conditions, the linear range of response to H2O2 concentration ranged from 5 × 10?7 to 2 × 10?4 M with a detection limit of 2 × 10?7 M at a signal-to-noise ratio of 3. The stability, reproducibility, and selectivity of the proposed biosensor are discussed in relation to the morphology and composition of the modified electrode.  相似文献   

2.
Phytic acid (PA) with its unique structure was attached to a glassy carbon electrode (GCE) to form PA/GCE modified electrode which was characterized by electrochemical impedance. The electrochemical behavior of cytochrome c (Cyt c) on the PA/GCE modified electrode was explored by cyclic voltammetry and differential pulse voltammetry. The Cyt c displayed a quasi-reversible redox process on PA modified electrode pH 7.0 phosphate buffer solution with a formal potential (E 0′) of 57 mV (versus Ag/AgCl). The peak currents were linearly related to the square root of the scan rate in the range of 20–120 mV·s?1. The electron transfer rate constant was determined to be 12.5 s?1. The PA/GCE modified electrode was applied to the determination of Cyt c, in the range of 5?×?10?6 to 3?×?10?4 M, the currents increase linearly to the Cyt c concentration with a correlation coefficient 0.9981. The detection limit was 1?×?10?6 M (signal/noise?=?3).  相似文献   

3.
A novel nitrite biosensor was constructed by simultaneous immobilization of hemoglobin (Hb) and a room temperature ionic liquid, octylpyridinium chloride ([OcPy][Cl]), on multi-walled carbon ionic liquid electrode (MWILE). The direct electron transfer of Hb showed a pair of redox peaks with a formal potential of ?0.187 V vs. Ag/AgCl in pH 5.0 acetate buffer solution. Nitrite (NO2 ?) catalysis on the modified electrode was investigated by cyclic voltammetry and amperometry. The biosensor exhibited a wide linear range for NO2 ? detection from 0.01 to 15 mM, with a detection limit (3σ) of 1.46 μM. MWILE provided an excellent matrix for protein immobilization and biosensor fabrication which could be used for the determination of NO2 ? with a low detection limit, fast response, long linearity, and excellent sensitivity.  相似文献   

4.
We report on a biosensor for organophosphate pesticides (OPs) by exploiting their inhibitory effect on the activity of acetylcholinesterase (AChE). A boron-doped diamond (BDD) electrode was modified with a nanocomposite prepared from carbon spheres (CSs; with an average diameter of 500 nm) that were synthesized from resorcinol and formaldehyde, and then were coated with gold nanoparticles (AuNPs) by chemically growing them of the CSs. Compared to a bare BDD electrode, the electron transfer resistance is lower on this new electrode. Compared to an electrode without Au-NPs, the peak potential is negatively shifted by 42 mV, and the peak current is increased by 55 %. This is ascribed to the larger surface in the AuNP-CS nanocomposite which improves the adsorption of AChE, enhances its activity, and facilitates electrocatalysis. Under optimum conditions, the inhibitory effect of chlorpyrifos is linearly related to the negative log of its concentration in the 10?11 to 10?7 M range, with a detection limit of 1.3?×?10?13 M. For methyl parathion, the inhibition effect is linear in the 10?12 to 10?6 M range, and the detection limit is 4.9?×?10?13 M. The biosensor exhibits good precision and acceptable operational and temporal stability.
Figure
A novel acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres was firstly prepared to detect organophosphate pesticides. This biosensor exhibited higher sensitivity, lower detection limit, good reproducibility and acceptable stability.  相似文献   

5.
《Analytical letters》2012,45(5):818-830
A facile strategy to construct an amperometric biosensor was described for the determination of hydrogen peroxide (H2O2). This biosensor relied on an electrospinning gold nanoparticle-chitosan-poly(vinyl alcohol) composite nanofibers modified ITO electrode, followed by immobilization of hemoglobin (Hb) on the surface. The introduction of nanofibers and gold nanoparticles in the modification of electrode surface not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate. Under optimum conditions, the sensor was characterized in terms of its morphology by scanning electron microscopy and its electroactivity by cyclic voltammetry and chronoamperometry. Scanning electron microscopy revealed that the obtained nanofibers were uniform. The chronoamperometric behavior of the modified electrode indicated that the immobilized Hb retained electrochemical activity inside the electrospinning fibrous membranes. The electrode responded linearly to H2O2 in a wider concentration range of 5.6 × 10?7 M to 5.2 × 10?2 M with a low detection limit (S/N = 3) of 1.98 × 10?7 M and a short response time of ~4 s, suggesting a much better performance than that of other sensors. Moreover, the biosensor achieved bulk production and exhibited superior properties for the sensitive determination of H2O2, studied namely, long-term stability, good reproducibility, and high selectivity.  相似文献   

6.
We have developed an enzymatic glucose biosensor that is based on a flat platinum electrode which was covered with electrophoretically deposited rhodium (Rh) nanoparticles and then sintered to form a large surface area. The biosensor was obtained by depositing glucose oxidase (GOx), Nafion, and gold nanoparticles (AuNPs) on the Rh electrode. The electrical potential and the fractions of Nafion and GOx were optimized. The resulting biosensor has a very high sensitivity (68.1 μA mM?1 cm?2) and good linearity in the range from 0.05 to 15 mM (r?=?0.989). The limit of detection is as low as 0.03 mM (at an SNR of 3). The glucose biosensor also is quite selective and is not interfered by electroactive substances including ascorbic acid, uric acid and acetaminophen. The lifespan is up to 90 days. It was applied to the determination of glucose in blood serum, and the results compare very well with those obtained with a clinical analyzer.
Figure
An enzymatic glucose biosensor was prepared based on rhodium nanoparticle modified Pt electrode and glucose oxidase immobilized in gold nanoparticles and Nafion composite film. The electrode showed a good response to glucose. The sensor was applied to the determination of glucose in blood serum.  相似文献   

7.
A robust and effective composite film based on gold nanoparticles (GNPs)/room temperature ionic liquid (RTIL)/multi-wall carbon nanotubes (MWNTs) modified glassy carbon (GC) electrode was prepared by a layer-by-layer self-assembly technique. Cytochrome c (Cyt c) was successfully immobilized on the RTIL-nanohybrid film modified GC electrode by electrostatic adsorption. Direct electrochemistry and electrocatalysis of Cyt c were investigated. The results suggested that Cyt c could be tightly adsorbed on the modified electrode. A pair of well-defined quasi-reversible redox peaks of Cyt c was obtained in 0.10 M, pH 7.0 phosphate buffer solution (PBS). RTIL-nanohybrid film showed an obvious promotion for the direct electron transfer between Cyt c and the underlying electrode. The immobilized Cyt c exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis currents increased linearly to the H2O2 concentration in a wide range of 5.0 × 10−5– 1.15 × 10−3 M. Based on the multilayer film, the third-generation biosensor could be constructed for the determination of H2O2.  相似文献   

8.
《Analytical letters》2012,45(8):1610-1621
Abstract

Cobalt hexacyanoferrate (CoHCF) film was formed on multiwalled carbon nanotubes (MWNTs) modified gold electrode by electrodeposition from 0.5 M KCl solution containing CoCl2 and K3Fe(CN)6. The electrochemical behavior and the electrocatalytic property of the modified electrode were investigated. Compared with CoHCF/gold electrode, the CoHCF/MWNTs/gold electrode exhibits greatly improved stability and enhanced electrocatalytic activity toward the oxidation of thiosulfate. A linear range from 5.0×10?5 to 6.5×10?3 M (r=0.9990) for thiosulfate detection at the CoHCF/MWNTs/gold electrode was obtained, with a detection limit of 2.0×10?5 M (S/N=3).  相似文献   

9.
A novel glucose biosensor is presented as that based on a glassy carbon electrode modified with hollow gold nanoparticles (HGNs) and glucose oxidase. The sensor exhibits a better differential pulse voltammetric response towards glucose than the one based on conventional gold nanoparticles of the same size. This is attributed to the good biological conductivity and biocompatibility of HGNs. Under the optimal conditions, the sensor displays a linear range from 2.0?×?10?6 to 4.6?×?10?5?M of glucose, with a detection limit of 1.6?×?10?6?M (S/N?=?3). Good reproducibility, stability and no interference make this biosensor applicable to the determination of glucose in samples such as sports drinks.
Figure
A novel glucose biosensor was prepared based on glucose oxidase, hollow gold nanoparticles and chitosan modified glassy carbon electrode. The electrode showed a good response for the glucose. The sensor has been verified by the determination of glucose in sport drink  相似文献   

10.
An acetylcholinesterase (AChE) biosensor was constructed based on gold nanoparticles (AuNPs) using electroless plating on vertical nitrogen-doped single-walled carbon nanotubes (VNSWCNTs) for detecting organophosphorus pesticides (OPs). AChE was immobilised on AuNPs via Au–S bonding, and VNSWCNTs were produced by spontaneous chemical adsorption of NSWCNTs on gold electrode, also via Au–S bonding. This modified electrode exhibited excellent electron transfer capacity due to the synergy between AuNPs and VNSWCNTs. The developed biosensor showed good linear relations at concentrations of 10?5 – 1 ppb, and the detection limits were 3.04 × 10?6 ppb for methyl parathion, 1.96 × 10?6 ppb for malathion and 2.06 × 10?6 ppb for chlorpyrifos, respectively. The AChE biosensor revealed satisfactory stability, excellent sensitivity and good repeatability. These results suggest that this biosensor has good application prospects and can function as a sensitive device in OPs analysis.  相似文献   

11.
Xiaoyu Cao 《Mikrochimica acta》2014,181(9-10):1133-1141
We have developed an ultra-sensitive electrochemical DNA biosensor by assembling probe ssDNA on a glassy carbon electrode modified with a composite made from molybdenum disulfide, graphene, chitosan and gold nanoparticles. A thiol-tagged DNA strand coupled to horseradish peroxidase conjugated to AuNP served as a tracer. The nanocomposite on the surface acts as relatively good electrical conductor for accelerating the electron transfer, while the enzyme tagged gold nanoparticles provide signal amplification. Hybridization with the target DNA was studied by measuring the electrochemical signal response of horseradish peroxidase using differential pulse voltammetry. The calibration plot is linear in the 5.0?×?10?14 and 5.0?×?10?9 M concentration range, and the limit of detection is 2.2?×?10?15 M. The biosensor displays high selectivity and can differentiate between single-base mismatched and three-base mismatched sequences of DNA. The approach is deemed to provide a sensitive and reliable tool for highly specific detection of DNA.
Figure
We have developed an ultra-sensitive electrochemical DNA biosensor by assembling probe (ssDNA) on a glassy carbon electrode modified with a composite made from molybdenum disulfide, graphene, chitosan and gold nanoparticles. The nanocomposite on the surface acts as relatively good electrical conductor for accelerating the electron transfer, while the enzyme tagged gold nanoparticles provide signal amplification. The biosensor displays high selectivity and can differentiate between single-base mismatched and three-base mismatched sequences of DNA  相似文献   

12.
We describe a highly sensitive and selective amperometric sensor for the determination of nitrite. A glassy carbon electrode was modified with a composite made from gold nanoparticles (AuNPs) and sulfonated graphene (SG). The modified electrode displays excellent electrocatalytic activity in terms of nitrite oxidation by giving much higher peak currents (at even lower oxidation overpotential) than those found for the bare electrode, the AuNPs-modified electrode, and the SG-modified electrode. The sensor has a linear response in the 10 μM to 3.96 mM concentration range, a very good detection sensitivity (45.44 μA mM?1), and a lower detection limit of 0.2 μM of nitrite. Most common ions and many environmental organic pollutants do not interfere. The sensor was successfully applied to the determination of nitrite in water samples, and the results were found to be consistent with the values obtained by spectrophotometry.
Figure
A highly sensitive amperometric sensor for nitrite using a glassy carbon electrode modified with gold nanoparticles/sulfonated graphene (AuNPs/SG) composites is presented  相似文献   

13.
《Analytical letters》2012,45(16):2559-2570
A sensitive electrochemical DNA biosensor based on a mixed monolayer structure self-assembled at nanoporous gold (NPG) electrode surface was prepared for Escherichia coli (E. coli) detection. The NPG was fabricated on gold electrode, onto which thiolated oligonucleotides (SH-DNA) and mercaptohexanol (MCH) were covalently linked forming a mixed self-assembled monolayer (SAM). The hybridization between the SH-DNA/MCH modified biosensor and E. coli DNA was monitored with differential pulse voltammetry measurement using methylene blue (MB) as the hybridization indicator. The biosensor can detect 1 × 10?12 M DNA target and 50 cfu/μL E. coli without any nucleic acid amplification steps. The detection limit was lowered to 50 cfu/mL after 5.0 h of incubation.  相似文献   

14.
Enzyme-free amperometric ultrasensitive determination of hydrogen peroxide (H2O2) was investigated using a Prussian blue (PB) film-modified gold nanoparticles (AuNPs) graphite–wax composite electrode. A stable PB film was obtained on graphite surface through 2-aminoethanethiol (AET)-capped AuNPs by a simple approach. Field emission scanning electron microscope studies results in formation of PB nanoparticle in the size range of 60–80 nm. Surface modification of PB film on AET–AuNPs–GW composite electrode was confirmed by Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy studies. Highly sensitive determination of H2O2 at a peak potential of ?0.10 V (vs. SCE) in 0.1 M KCl PBS, pH?=?7.0) at a scan rate of 20 mVs?1 with a sensitivity of 23.58 μA/mM was observed with the modified electrode using cyclic voltammetry. The synergetic effect of PB film with AuNPs has resulted in a linear range of 0.05 to 7,800 μM with a detection limit of 0.015 μM for H2O2 detection with the present electrode. Chronoamperometric studies recorded for the successive additions of H2O2 with the modified electrode showed an excellent linearity (R 2?=?0.9932) in the range of 4.8?×?10?8 to 7.4?×?10?8 M with a limit of detection of 1.4?×?10?8 M. Selective determination of H2O2 in presence of various interferents was successfully demonstrated. Human urine samples and stain remover solutions were also investigated for H2O2 content.  相似文献   

15.
《Analytical letters》2012,45(11):1721-1734
Abstract

A novel approach to assemble an H2O2 amperometric biosensor was introduced. The biosensor was constructed by entrapping horseradish peroxidase (HRP) labeled nano‐scaled particulate gold (nano‐Au) (HRP‐nano‐Au electrostatic composite) in a new silica sol‐gel/alginate hybrid film using glassy carbon electrode as based electrode. This suggested strategy fully merged the merits of sol‐gel derived inorganic‐organic composite film and the nano‐Au intermediator. The silica sol‐gel/alginate hybrid material can improve the properties of conventional sol‐gel material and effectively prevent cracking of film. The entrapment of HRP in the form of HRP‐nano‐Au can not only factually prevent the leaking of enzyme out of the film but also provide a favorable microenvironment for HRP. With hydroquinone as an electron mediator, the proposed HRP electrode exhibited good catalytic activity for the reduction of H2O2. The parameters affecting both the qualities of sol‐gel/alginate hybrid film and the biosensor response were optimized. The biosensor exhibited high sensitivity of 0.40 Al mol?1 cm?2 for H2O2 over a wide linear range of concentration from 1.22×10?5 to 1.46×10?3 mol L?1, rapid response of <5 s and a detection limit of 0.61×10?6 mol L?1. The enzyme electrode has remarkable stability and retained 86% of its initial activity after 45 days of storage in 0.1 mol L?1 Tris‐HCl buffer solutions at pH 7.  相似文献   

16.
In this paper, the use of molecular self-assembled monolayers of 5-(1,3-dithiolan-2-eyl)-3-methyl banzen-1,2-diol (DMD) on gold nanoparticles was described (DMD-AuNPs). The redox properties of modified electrode at various scan rates were investigated by cyclic voltammetry. A pair of well-defined quasi-reversible redox peaks of DMD were obtained at the modified electrode. Dramatically enhanced electrocatalytic activity was exemplified at the DMD-AuNPs, as an electrochemical sensor to investigate the electro-oxidation of isoprenaline (IP). With this modified electrode, the oxidation potential of the IP was shifted about 235 mV toward a less positive potential value than that of an unmodified electrode. The values of electron transfer coefficients (α = 0.5), catalytic rate constant (ks = 9.2 s?1) and diffusion coefficient (D = 8.9 × 10?5 cm2 s?1) were calculated for IP. The response of catalytic current with IP concentration showed a linear relation in the range from 0.5 to 800 µM with a detection limit of 0.21 µM. Finally, this modified electrode was used for the determination of IP in IP injections.  相似文献   

17.
Wei WEI  Shou-Guo WU 《分析化学》2019,47(2):e19014-e19020
In this work, a gold nanoparticles/graphitizing carbon felt electrode (AuNPs/GCFE) was fabricated and a disposable sensor was thus fabricated to detect nitrite quickly and conveniently. The kinetic parameters of the electrode were studied in phosphate buffer solution (PBS). Under the optimal conditions, by using cyclic voltammetry, the oxidation peak current was linear with the concentration of nitrite in the range from 1.00 × 10?6 M to 3.35 × 10?3 M, with a detection limit of 9.50 × 10?7 M (3S/k). The influence of various anions on nitrite detection was studied, and the results showed that the fabricated sensor had good specificity toward nitrite.  相似文献   

18.
Yazhen Wang 《Mikrochimica acta》2011,172(3-4):419-424
The electrochemistry of uric acid at a gold electrode modified with a self-assembled film of L-cysteine was studied by cyclic voltammetry and differential pulse voltammetry. Compared to the bare gold electrode, uric acid showed better electrochemical response in that the anodic peak current is stronger and the peak potential is negatively shifted by about 100 mV. The effects of experimental conditions on the oxidation of uric acid were tested and a calibration plot was established. The differential pulse response to uric acid is linear in the concentration range from 1.0?×?10?6 to ~?1.0?×?10?4 mol?L?1 (r?=?0.9995) and from 1.0?×?10?4 to ~?5.0?×?10?4 mol?L?1 (r?=?0.9990), the detection limit being 1.0?×?10?7 mol?L?1 (at S/N?=?3). The high sensitivity and good selectivity of the electrode was demonstrated by its practical application to the determination of uric acid in urine samples.
Cyclic voltammograms of UA at the bare electrode (a,b) and the L-Cys/Au electrode (c,d,e) in HAc-NaAc buffer containing different concentrations of UA. (a,c): blank; (b, d): 2.0?×?10?5 mol?L?1; (e) 4.0?×?10?5 mol?L?1. Scan rate: 100 mV?s?1  相似文献   

19.
20.
A novel and sensitive biosensor was developed for the determination of nitrite. Firstly, multi-walled carbon nanotubes–poly(amidoamine)–chitosan (MWNT–PAMAM–Chit) nanocomposite along with the incorporation of DNA was used to modify the glassy carbon electrode. Then the immobilization of Cyt c was accomplished using electrochemical deposition method by consecutive cyclic voltammetry (CV) scanning in a neutral Cyt c solution. CV behaviors of the modified electrodes showed that the MWNT–PAMAM–Chit nanocomposite is a good platform for the immobilization of DNA and Cyt c in order, at the same time, an excellent promoter for the electron transfer between Cyt c and the electrode. At high potential, the immobilized Cyt c could be further oxidized into highly reactive Cyt c π-cation by two-step electrochemical oxidation, which could oxidize NO2 into NO3 in the solution. Therefore, a nitrite biosensor based on the biocatalytic oxidation of the immobilized Cyt c was fabricated, which showed a fast response to nitrite (less than 5 s). The linear range of 0.2–80 μM and a detection limit of 0.03 μM was obtained. Finally, the application in food analysis using sausage as testing samples was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号