首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We consider generalized Morrey type spaces Mp( ·),q( ·),w( ·)( W) {\mathcal{M}^{p\left( \cdot \right),\theta \left( \cdot \right),\omega \left( \cdot \right)}}\left( \Omega \right) with variable exponents p(x), θ(r) and a general function ω(x, r) defining a Morrey type norm. In the case of bounded sets W ì \mathbbRn \Omega \subset {\mathbb{R}^n} , we prove the boundedness of the Hardy–Littlewood maximal operator and Calderón–Zygmund singular integral operators with standard kernel. We prove a Sobolev–Adams type embedding theorem Mp( ·),q1( ·),w1( ·)( W) ? Mq( ·),q2( ·),w2( ·)( W) {\mathcal{M}^{p\left( \cdot \right),{\theta_1}\left( \cdot \right),{\omega_1}\left( \cdot \right)}}\left( \Omega \right) \to {\mathcal{M}^{q\left( \cdot \right),{\theta_2}\left( \cdot \right),{\omega_2}\left( \cdot \right)}}\left( \Omega \right) for the potential type operator I α(·) of variable order. In all the cases, we do not impose any monotonicity type conditions on ω(x, r) with respect to r. Bibliography: 40 titles.  相似文献   

2.
Let V and V* be a real reflexive Banach space and its dual space, respectively. This paper is devoted to the abstract Cauchy problem for doubly nonlinear evolution equations governed by subdifferential operators with non-monotone perturbations of the form: ?V yt (u¢(t)) + ?V j(u(t)) + B(t, u(t)) ' f(t){\partial_V \psi^t (u{^\prime}(t)) + \partial_V \varphi(u(t)) + B(t, u(t)) \ni f(t)} in V*, 0 < t < T, u(0) = u 0, where ?V yt, ?V j: V ? 2V*{\partial_V \psi^t, \partial_V \varphi : V \to 2^{V^*}} denote the subdifferential operators of proper, lower semicontinuous and convex functions yt, j: V ? (-¥, +¥]{\psi^t, \varphi : V \to (-\infty, +\infty]}, respectively, for each t ? [0,T]{t \in [0,T]}, and f : (0, T) → V* and u0 ? V{u_0 \in V} are given data. Moreover, let B be a (possibly) multi-valued operator from (0, T) × V into V*. We present sufficient conditions for the local (in time) existence of strong solutions to the Cauchy problem as well as for the global existence. Our framework can cover evolution equations whose solutions might blow up in finite time and whose unperturbed equations (i.e., B o 0{B \equiv 0}) might not be uniquely solved in a doubly nonlinear setting. Our proof relies on a couple of approximations for the equation and a fixed point argument with a multi-valued mapping. Moreover, the preceding abstract theory is applied to doubly nonlinear parabolic equations.  相似文献   

3.
The first part of this paper is devoted to the study of FN{\Phi_N} the orthogonal polynomials on the circle, with respect to a weight of type f = (1 − cos θ) α c where c is a sufficiently smooth function and ${\alpha > -\frac{1}{2}}${\alpha > -\frac{1}{2}}. We obtain an asymptotic expansion of the coefficients F*(p)N(1){\Phi^{*(p)}_{N}(1)} for all integer p where F*N{\Phi^*_N} is defined by F*N (z) = zN [`(F)]N(\frac1z) (z 1 0){\Phi^*_N (z) = z^N \bar \Phi_N(\frac{1}{z})\ (z \not=0)}. These results allow us to obtain an asymptotic expansion of the associated Christofel–Darboux kernel, and to compute the distribution of the eigenvalues of a family of random unitary matrices. The proof of the results related to the orthogonal polynomials are essentially based on the inversion of the Toeplitz matrix associated to the symbol f.  相似文献   

4.
For log\frac1+?52 £ l* £ l* < ¥{\rm log}\frac{1+\sqrt{5}}{2}\leq \lambda_\ast \leq \lambda^\ast < \infty , let E*, λ*) be the set {x ? [0,1): liminfn ? ¥\fraclogqn(x)n=l*, limsupn ? ¥\fraclogqn(x)n=l*}. \left\{x\in [0,1):\ \mathop{\lim\inf}_{n \rightarrow \infty}\frac{\log q_n(x)}{n}=\lambda_{\ast}, \mathop{\lim\sup}_{n \rightarrow \infty}\frac{\log q_n(x)}{n}=\lambda^{\ast}\right\}. It has been proved in [1] and [3] that E*, λ*) is an uncountable set. In the present paper, we strengthen this result by showing that dimE(l*, l*) 3 \fracl* -log\frac1+?522l*\dim E(\lambda_{\ast}, \lambda^{\ast}) \ge \frac{\lambda_{\ast} -\log \frac{1+\sqrt{5}}{2}}{2\lambda^{\ast}}  相似文献   

5.
An undirected graph G = (V, E) is called \mathbbZ3{\mathbb{Z}_3}-connected if for all b: V ? \mathbbZ3{b: V \rightarrow \mathbb{Z}_3} with ?v ? Vb(v)=0{\sum_{v \in V}b(v)=0}, an orientation D = (V, A) of G has a \mathbbZ3{\mathbb{Z}_3}-valued nowhere-zero flow f: A? \mathbbZ3-{0}{f: A\rightarrow \mathbb{Z}_3-\{0\}} such that ?e ? d+(v)f(e)-?e ? d-(v)f(e)=b(v){\sum_{e \in \delta^+(v)}f(e)-\sum_{e \in \delta^-(v)}f(e)=b(v)} for all v ? V{v \in V}. We show that all 4-edge-connected HHD-free graphs are \mathbbZ3{\mathbb{Z}_3}-connected. This extends the result due to Lai (Graphs Comb 16:165–176, 2000), which proves the \mathbbZ3{\mathbb{Z}_3}-connectivity for 4-edge-connected chordal graphs.  相似文献   

6.
We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ${u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2}We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ut = (un)xx + lf(u)/(ò-11 f(u)dx)2{u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2} with Dirichlet boundary conditions and positive initial data. The function f satisfies: f(s),−f ′ (s) > 0 for s ≥ 0 and s n-1 f(s) is integrable at infinity. Due to the conditions on f, there exists a critical value of parameter λ, say λ*, such that for λ > λ* the solution u = u(x, t; λ) blows up globally in finite time, while for λ ≥ λ* the corresponding steady-state problem does not have any solution. For 0 < λ < λ* there exists a unique steady-state solution w = w(x; λ) while u = u(x, t; λ) is global in time and converges to w as t → ∞. Here we show the global grow-up of critical solution u* =  u(x, t; λ*) (u* (x, t) → ∞, as t → ∞ for all x ? (-1,1){x\in(-1,1)}.  相似文献   

7.
Under a general hypothesis an expanding map T of a Riemannian manifold M is known to preserve a measure equivalent to the Liouville measure on that manifold. As a consequence of this and Birkhoff’s pointwise ergodic theorem, the orbits of almost all points on the manifold are asymptotically distributed with regard to this Liouville measure. Let T be Lipschitz of class τ for some τ in (0,1], let Ω(x) denote the forward orbit closure of x and for a positive real number δ and let E(x0, δ) denote the set of points x in M such that the distance from x0 to Ω is at least δ. Let dim A denote the Hausdorff dimension of the set A. In this paper we prove a result which implies that there is a constant C(T) > 0 such that dimE(x0,d) 3 dimM - \fracC(T)|logd| \dim E(x_0,\delta) \ge \dim M - \frac{C(T)}{\vert\!\log \delta \vert} if τ = 1 and dimE(x0,d) 3 dimM - \fracC(T)log|logd|\dim E(x_0,\delta) \ge \dim M - \frac{C(T)}{\log \vert \log \delta \vert} if τ < 1. This gives a quantitative converse to the above asymptotic distribution phenomenon. The result we prove is of sufficient generality that a similar result for expanding hyperbolic rational maps of degree not less than two follows as a special case.  相似文献   

8.
Consider an irreducible, admissible representation π of GL(2,F) whose restriction to GL(2,F) +  breaks up as a sum of two irreducible representations π  +  + π −. If π = r θ , the Weil representation of GL(2,F) attached to a character θ of K * does not factor through the norm map from K to F, then c ? [^(K*)]\chi\in \widehat{K^*} with (c. q-1)| F * =w K/F(\chi . \theta ^{-1})\vert _{ F^{ * }}=\omega _{ {K/F}} occurs in r θ  +  if and only if e(qc-1,y0)=e([`(q)]c-1,y0)=1\epsilon(\theta\chi^{-1},\psi_0)=\epsilon(\overline \theta\chi^{-1},\psi_0)=1 and in r θ − if and only if both the epsilon factors are − 1. But given a conductor n, can we say precisely how many such χ will appear in π? We calculate the number of such characters at each given conductor n in this work.  相似文献   

9.
Let T be a C0–contraction on a separable Hilbert space. We assume that IH − T*T is compact. For a function f holomorphic in the unit disk \mathbbD{\mathbb{D}} and continuous on [`(\mathbbD)]\overline{{\mathbb{D}}}, we show that f(T) is compact if and only if f vanishes on s(T)?\mathbbT\sigma(T)\cap{\mathbb{T}}, where σ(T) is the spectrum of T and \mathbbT{\mathbb{T}} the unit circle. If f is just a bounded holomorphic function on \mathbbD{\mathbb{D}}, we prove that f(T) is compact if and only if limn? ¥||Tnf(T)|| = 0\lim\limits_{n\rightarrow \infty}\|T^{n}f(T)\| = 0.  相似文献   

10.
A set S of vertices in a graph G is a connected dominating set if every vertex not in S is adjacent to some vertex in S and the subgraph induced by S is connected. The connected domination number γ c (G) is the minimum size of such a set. Let d*(G)=min{d(G),d([`(G)])}{\delta^*(G)={\rm min}\{\delta(G),\delta({\overline{G}})\}} , where [`(G)]{{\overline{G}}} is the complement of G and δ(G) is the minimum vertex degree. We prove that when G and [`(G)]{{\overline{G}}} are both connected, gc(G)+gc([`(G)]) £ d*(G)+4-(gc(G)-3)(gc([`(G)])-3){{\gamma_c}(G)+{\gamma_c}({\overline{G}})\le \delta^*(G)+4-({\gamma_c}(G)-3)({\gamma_c}({\overline{G}})-3)} . As a corollary, gc(G)+gc([`(G)]) £ \frac3n4{{\gamma_c}(G)+{\gamma_c}({\overline{G}})\le \frac{3n}{4}} when δ*(G) ≥ 3 and n ≥ 14, where G has n vertices. We also prove that gc(G)+gc([`(G)]) £ d*(G)+2{{\gamma_c}(G)+{\gamma_c}({\overline{G}})\le \delta^*(G)+2} when gc(G),gc([`(G)]) 3 4{{\gamma_c}(G),{\gamma_c}({\overline{G}})\ge 4} . This bound is sharp when δ*(G) = 6, and equality can only hold when δ*(G) = 6. Finally, we prove that gc(G)gc([`(G)]) £ 2n-4{{\gamma_c}(G){\gamma_c}({\overline{G}})\le 2n-4} when n ≥ 7, with equality only for paths and cycles.  相似文献   

11.
We consider the space A(\mathbbT)A(\mathbb{T}) of all continuous functions f on the circle \mathbbT\mathbb{T} such that the sequence of Fourier coefficients [^(f)] = { [^(f)]( k ), k ? \mathbbZ }\hat f = \left\{ {\hat f\left( k \right), k \in \mathbb{Z}} \right\} belongs to l 1(ℤ). The norm on A(\mathbbT)A(\mathbb{T}) is defined by || f ||A(\mathbbT) = || [^(f)] ||l1 (\mathbbZ)\left\| f \right\|_{A(\mathbb{T})} = \left\| {\hat f} \right\|_{l^1 (\mathbb{Z})}. According to the well-known Beurling-Helson theorem, if f:\mathbbT ? \mathbbT\phi :\mathbb{T} \to \mathbb{T} is a continuous mapping such that || einf ||A(\mathbbT) = O(1)\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = O(1), n ∈ ℤ then φ is linear. It was conjectured by Kahane that the same conclusion about φ is true under the assumption that || einf ||A(\mathbbT) = o( log| n | )\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\log \left| n \right|} \right). We show that if $\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right)$\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right), then φ is linear.  相似文献   

12.
Consider an ordinary errors-in-variables model. The true level α n (θ*) of a test at nominal level α and sample size n is said to be pointwise robust if α n (θ*) → α as n → ∞ for each parameter θ*. Let Ω* be a set of values of θ*. Define α n = sup θ* ∈Ω*α n (θ*). The test is said to be uniformly robust over Ω* if α n → α as n → ∞. Corresponding definitions apply to the coverage probabilities of confidence sets. It is known that all existing large-sample tests for the parameters of the errors-in-variables model are pointwise robust. However, they might not be uniformly robust over certain null parameter spaces. In this paper, we construct uniformly robust tests for testing the vector coefficient parameter and vector slope parameter in the functional errors-in-variables model. These tests are established through constructing the confidence sets for the same parameters in the model with similar desirable property. Power comparisons based on simulation studies between the proposed tests and some existing tests in finite samples are also presented.  相似文献   

13.
We are interested in the isometric equivalence problem for the Cesàro operator C(f) (z) = \frac1z ò0zf(x) \frac11-xd x{C(f) (z) =\frac{1}{z} \int_{0}^{z}f(\xi) \frac{1}{1-\xi}d \xi} and an operator Tg(f)(z)=\frac1zò0zf(x) g(x) d x{T_{g}(f)(z)=\frac{1}{z}\int_{0}^{z}f(\xi) g^{\prime}(\xi) d \xi}, where g is an analytic function on the disc, on the Hardy and Bergman spaces. Then we generalize this to the isometric equivalence problem of two operators Tg1{T_{g_{1}}} and Tg2{T_{g_{2}}} on the Hardy space and Bergman space. We show that the operators Tg1{T_{g_{1}}} and Tg2{T_{g_{2}}} satisfy Tg1U1=U2Tg2{T_{g_{1}}U_{1}=U_{2}T_{g_{2}}} on H p , 1 ≤ p < ∞, p ≠ 2 if and only if g2(z) = lg1(eiqz){g_{2}(z) =\lambda g_{1}(e^{i\theta}z) }, where λ is a modulus one constant and U i , i = 1, 2 are surjective isometries of the Hardy Space. This is analogous to the Campbell-Wright result on isometrically equivalence of composition operators on the Hardy space.  相似文献   

14.
The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foias. Just as a contraction is related to the Szego kernel kS(z,w) = (1 - z [`(w)])-1{k_S(z,w) = (1 - z {\overline {w}})^{-1}} for |z|, |w| < 1, by means of (1/k S )(T, T*) ≥ 0, we consider an arbitrary open connected domain Ω in \mathbb Cn{{\mathbb {C}}^n}, a kernel k on Ω so that 1/k is a polynomial and a tuple T = (T 1, T 2, . . . , T n ) of commuting bounded operators on a complex separable Hilbert space H{\mathcal H} such that (1/k)(T, T*) ≥ 0. Under some standard assumptions on k, it turns out that whether a characteristic function can be associated with T or not depends not only on T, but also on the kernel k. We give a necessary and sufficient condition. When this condition is satisfied, a functional model can be constructed. Moreover, the characteristic function then is a complete unitary invariant for a suitable class of tuples T.  相似文献   

15.
Let E be a row-finite directed graph, let G be a locally compact abelian group with dual group Ĝ = Γ, let ω be a labeling map from E* to Γ, and let (C*(E), G, α ω ) be the C*-dynamical system defined by ω. Some mappings concerning the AF-embedding construction of C*(E) ×aw GC*(E) \times _{\alpha ^\omega } G are studied in more detail. Several necessary conditions of AF-embedding and some properties of almost proper labeling map are obtained. Moreover it is proved that if E is constructed by attaching some 1-loops to a directed graph T consisting of some rooted directed trees and G is compact, then ω is almost proper, that is a sufficient condition for AF-embedding, if and only if Σ j=1 k wgj 1 1G\omega _{\gamma _j } \ne 1_\Gamma for any loop γ i , γ 2, ..., γ k attached to one path in T.  相似文献   

16.
We consider the Cauchy problem for a second order weakly hyperbolic equation, with coefficients depending only on the time variable. We prove that if the coefficients of the equation belong to the Gevrey class gs0\gamma^{s_{0}} and the Cauchy data belong to gs1\gamma^{s_{1}}, then the Cauchy problem has a solution in  gs0([0,T*];gs1(\mathbbR))\gamma^{s_{0}}([0,T^{*}];\gamma^{s_{1}}(\mathbb{R})) for some T *>0, provided 1≤s 1≤2−1/s 0. If the equation is strictly hyperbolic, we may replace the previous condition by 1≤s 1s 0.  相似文献   

17.
Szilvia Szilágyi 《Order》2008,25(4):321-333
We present a characterization of the maximal compatible extensions of a given compatible partial order ≤  r on a unary algebra (A,f ). These extensions can be constructed by using the compatible linear extensions of ≤  r*, where (A*,f*) is the so called contracted quotient algebra of (A,f) and the compatible partial order ≤  r* on (A*,f*) is naturally induced by ≤  r . Using this characterization, we determine the intersection of the maximal compatible extensions of ≤  r .   相似文献   

18.
Let α be an irrational number and let D N*(α) and DN(α) denote the star-discrepancy and the discrepancy of the sequence (nα)n ≥1 mod 1, resp. We study properties of the maps α→ v *(α) = limsupN →∞ N D N*(α)/log N and α→v(α) = limsupN →∞ N D N(α)/log N where α is transcendental but not a U-number. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
In this paper, we reprove that: (i) the Aluthge transform of a complex symmetric operator [(T)\tilde] = |T|\frac12 U|T|\frac12\tilde{T} = |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} is complex symmetric, (ii) if T is a complex symmetric operator, then ([(T)\tilde])*(\tilde{T})^{*} and [(T*)\tilde]\widetilde{T^{*}} are unitarily equivalent. And we also prove that: (iii) if T is a complex symmetric operator, then [((T*))\tilde]s,t\widetilde{(T^{*})}_{s,t} and ([(T)\tilde]t,s)*(\tilde{T}_{t,s})^{*} are unitarily equivalent for s, t > 0, (iv) if a complex symmetric operator T belongs to class wA(t, t), then T is normal.  相似文献   

20.
In this paper, we give a sufficient condition for a graph to have a degree bounded spanning tree. Let n ≥ 1, k ≥ 3, c ≥ 0 and G be an n-connected graph. Suppose that for every independent set ${S \subseteq V(G)}In this paper, we give a sufficient condition for a graph to have a degree bounded spanning tree. Let n ≥ 1, k ≥ 3, c ≥ 0 and G be an n-connected graph. Suppose that for every independent set S í V(G){S \subseteq V(G)} of cardinality n(k−1) + c + 2, there exists a vertex set X í S{X \subseteq S} of cardinality k such that the degree sum of vertices in X is at least |V(G)| − c −1. Then G has a spanning tree T with maximum degree at most kc/nù{k+\lceil c/n\rceil} and ?v ? V(T)max{dT(v)-k,0} £ c{\sum_{v\in V(T)}\max\{d_T(v)-k,0\}\leq c} .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号