首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using a narrow single electron spin resonance (ESR) line agent, triarylmethyl, tris(8-carboxy-2,2,6,6-tetrahydroxyethylbenzo[1,2-d:4,5-d′] bis(1,3)dithiole-4-yl)methyl sodium salt (TAM OX063), pulsed longitudinally detected ESR (LODESR) measurements of a phantom or the chest of a living mouse at the operating frequency of ca. 300 MHz were taken and the effective longitudinal relaxation time (T 1*) was estimated for oximetry. Under irradiation of a pair of π-pulses with a variable interval between pulses (τ), in-phase LODESR signal intensities were obtained from the phantoms containing TAM dissolved in a physiological saline solution at a concentration of 1 mM and various concentrations of oxygen. TheT 1* of the phantom was calculated from the plotted curve of the LODESR signal intensity against τ. It was found that the reciprocal ofT 1*, i.e., the longitudinal relaxation rate, increased with the concentration of oxygen. In vivo pulsed LODESR measurements of the chest of living mice that had received a TAM injection via the intraperitoneal route were made. While the LODESR measurements were being made, the mice in one group breathed normal air and those in another group breathed 100% oxygen. It was found that the longitudinal relaxation rate of the mice breathing 100% oxygen was significantly greater than that of mice breathing normal air, indicating that breathing 100% oxygen elevates the thoracic longitudinal relaxation rate.  相似文献   

2.
Signal intensities of longitudinally detected ESR (LODESR) of 1,1-diphenyl-2-picrylhydrazyl powder were precisely measured at 250 to 950 MHz under a constant magnetic field microwave that was applied using a single-turn coil. The LODESR signal intensity was reduced linearly due to smaller Zeeman splitting. Because the noise level was constant, the sensitivity of LODESR was approximately proportional to the resonant frequency. As far as we know, this study represents the first attempt to measure precisely the relationship between the signal intensities and resonant frequencies of ESR in an experimental condition.  相似文献   

3.
A signal detector of longitudinally detected ESR (LODESR) is independent of the resonant frequency. We developed anin vivoLODESR spectrometer operating in the regions of 300, 700, and 900 MHz. Using this apparatus, we estimated signal intensities at different operating frequencies obtained from non- or high-dielectric loss phantoms that contained nitroxide radical solutions and from live rats that had received a nitroxide radical. Our result, higher signal intensities in the high-dielectric loss samples (such as physiological saline solution and animals) at a lower frequency, shows that the influence of a decrease in dielectric loss dominates over the signal reduction caused by smaller Zeeman splitting. We believe that this finding strongly supports anin vivoESR resonant frequency that tends to be low.  相似文献   

4.
A three-dimensional approach for measuring 15N relaxation times is described. Instead of selecting particular values for the relaxation period, in the proposed method the relaxation period is incremented periodically in order to create a 3D spectrum. This additional frequency domain of the transformed spectrum contains the relaxation time information in the T1 and T2 linewidths, and thus the longitudinal and transverse 15N relaxation times can be measured without determination of 2D cross peak volumes/intensities and subsequent curve fitting procedures.  相似文献   

5.
Spin-lattice relaxation times (T?s) of small water-soluble spin-labels in the aqueous phase as well as lipid-type spin-labels in membranes increase when the microwave frequency increases from 2 to 35 GHz (Hyde, et al., J. Phys. Chem. B 108 (2004) 9524-9529). The T?s measured at W-band (94 GHz) for the water-soluble spin-labels CTPO and TEMPONE (Froncisz, et al., J. Magn. Reson. 193 (2008) 297-304) are, however, shorter than when measured at Q-band (35 GHz). In this paper, the decreasing trends at W-band have been confirmed for commonly used lipid-type spin-labels in model membranes. It is concluded that the longest values of T? will generally be found at Q-band, noting that long values are advantageous for measurement of bimolecular collisions with oxygen. The contribution of dissolved molecular oxygen to the relaxation rate was found to be independent of microwave frequency up to 94 GHz for lipid-type spin-labels in membranes. This contribution is expressed in terms of the oxygen transport parameter W=T??1(Air)-T??1(N?), which is a function of both concentration and translational diffusion of oxygen in the local environment of a spin-label. The new capabilities in measurement of the oxygen transport parameter using saturation-recovery (SR) EPR at Q- and W-band have been demonstrated in saturated (DMPC) and unsaturated (POPC) lipid bilayer membranes with the use of stearic acid (n-SASL) and phosphatidylcholine (n-PC) spin-labels, and compared with results obtained earlier at X-band. SR EPR spin-label oximetry at Q- and W-band has the potential to be a powerful tool for studying samples of small volume, ~30 nL. These benefits, together with other factors such as a higher resonator efficiency parameter and a new technique for canceling free induction decay signals, are discussed.  相似文献   

6.
We have developed an in vivo longitudinally detected ESR (LODESR) imaging system operating at 700 MHz based on a loop-gap resonator and a pair of saddle-type pickup coils. A good linear relationship between the LODESR signal intensity and the applied power in a range up to 15.8 W was obtained. The detection of LODESR signals was barely affected by variations in the resonant properties. The characteristic of LODESR is suitable for in vivo examination. Using this system, we succeeded in obtaining LODESR-CT images of the head region of a rat after the intraperitoneal injection of a nitroxide radical.  相似文献   

7.
The interaction of molecular oxygen with derivatives of nitroxide EPR spin labels has been investigated using nuclear spin-relaxation spectroscopy in aqueous and nonaqueous solvents. The proton spin-lattice relaxation rate induced by oxygen provides a measure of the local concentration of oxygen, which we find is dependent on solvent. In water, the hydrophobic effect increases the local concentration of oxygen in the nonpolar portions of solute molecules. For nitroxides reduced to the hydroxylamine in aqueous solutions, we find that the local concentration of oxygen is approximately twice that associated with a free diffusion hard sphere limit, while in octane, this effect is absent. These results show that nitroxide based ESR oximetry may suffer a reference concentration shift of order a factor of two if the aqueous nitroxide spectrum or relaxation is used as the reference.  相似文献   

8.
We have performed liquid state (“Overhauser”) dynamic nuclear polarization (DNP) experiments at high magnetic field (9.2?T, corresponding to 260?GHz EPR and 400?MHz 1H-NMR resonance frequency) on solutions of pyruvate, lactate and alanine in water with TEMPOL nitroxide radicals as polarizing agent. We present experimental results showing DNP enhancement on metabolite methyl protons, varying for the different target metabolites. It is shown that the enhancements are achieved through direct coupling between the radicals and the target metabolites in solution, i.e., the effect is not mediated by the solvent water protons. The coupling factors between the TEMPOL radicals and the metabolites observed are a factor of 3–5 smaller compared to direct polarization transfer from TEMPOL to water protons.  相似文献   

9.
A new magnetometer utilizing a longitudinally detected ESR (LODESR) method was developed. The probe head of the LODESR magnetometer is equipped with a single-turn coil (8 mm in diameter) which has a very wide bandwidth because the reactance of the coil is always smaller than the resistance of the transmission line (50 ohm) at frequencies less than 700 MHz. Thus, an absolute magnetic field could be measured over a wide range (2 to 9 mT) using this magnetometer without changing the probe head.  相似文献   

10.
Magnetic relaxation in solids may be complicated by the creation and loss of dipolar order at finite rates. In tissues the molecular and spin dynamics may be significantly different because of the relatively high concentration of water. We have applied a modified Jeneer-Broekaert pulse sequence to measure dipolar relaxation rates in both dry and hydrated protein systems that may serve as magnetic models for tissue. In lyophilized and dry serum albumin, the dipolar relaxation time, T(1D) is on the order of 1 ms and is consistent with earlier reports. When hydrated by deuterium oxide, the dipolar relaxation times measured were on the order of tens of microseconds. When paramagnetic centers are included in the protein, the Jeneer-Broekaert echo decay times became the order of the decay time for transverse magnetization, i.e., the order of 10 micros or less. In the hydrated or paramagnetic systems, the dipolar relaxation times are too short to require inclusion in the quantitative analysis of magnetization transfer experiments.  相似文献   

11.
The design and evaluation of a multilayered element resonator (MLR), which consists of multiple layers of half-loop conductor plates and insulator sheets, are presented. An MLR and a bridge shielded loop-gap resonator (BLGR), which have similar sizes and resonant frequencies, were fabricated to compare their performances. Using the MLR and the BLGR, the modulation field width and signal intensity of a phantom containing a nitroxide radical were measured by employing a continuous-wave electron spin resonance (CW-ESR) technique at a radio frequency of 300 MHz. Using the same resonators, the longitudinally detected ESR (LODESR) signal intensities of the phantom were also compared. The loadedQ values of the resonators were almost the same. The modulation widths in the MLR were significantly wider than those in the BLGR when the modulation coils were driven at the same voltage. The signal intensities of CW-ESR and LODESR from the phantom in the MLR were significantly greater than those from the BLGR. Since eddy currents disturb the penetration of the modulation field in CW-ESR or detection of changes in magnetization in LODESR observations, these results show that, in the MLR, the eddy currents were suppressed to a greater degree than in the BLGR.  相似文献   

12.
《中国物理 B》2021,30(5):50707-050707
Alkali-metal atomic magnetometers employing longitudinal carrier magnetic field have ultrahigh sensitivity to measure transverse magnetic fields and have been applied in a variety of precise-measurement science and technologies. In practice, the magnetometer response is not rigorously proportional to the measured transverse magnetic fields and the existing fundamental analytical model of this magnetometer is effective only when the amplitudes of the measured fields are very small. In this paper, we present a modified analytical model to characterize the practical performance of the magnetometer more definitely. We find out how the longitudinal magnetization of the alkali metal atoms vary with larger transverse fields. The linear-response capacity of the magnetometer is determined by these factors: the amplitude and frequency of the longitudinal carrier field, longitudinal and transverse spin relaxation time of the alkali spins and rotation frequency of the transverse fields. We give a detailed and rigorous theoretical derivation by using the perturbation-iteration method and simulation experiments are conducted to verify the validity and correctness of the proposed modified model. This model can be helpful for measuring larger fields more accurately and configuring a desirable magnetometer with proper linear range.  相似文献   

13.
Samples of sandstone with and without deposits of silicon oxide stone strengthener as well as samples of historical brick material were analyzed by transverse NMR relaxation and mercury intrusion porosimetry. Relaxation times and relaxation time distributions of the protons from the water saturated samples were measured by low-field NMR using homogeneous and inhomogeneous fields. The measurements in inhomogeneous fields were performed with two different NMR-MOUSE sensors, one with a field gradient of 2 T/m and the other with an average field gradient of about 20 T/m. In the sandstone samples the application of stone strengtheners was shown to result in a confinement of the large pores within the outer layer of a few millimeters depth. Depending on the ferromagnetic contamination of the brick samples, the relaxation time distributions can be affected. The agreement of T2 relaxation time distributions and pore size distributions from mercury intrusion porosimetry was found to be better for the NMR-MOUSE sensors than for the homogeneous field measurements. This is true even for different brick samples, unless the content in ferromagnetic particles is very strong.  相似文献   

14.
Multiple-quantum spectroscopies are reviewed in the frame of electron paramagnetic resonance. Some properties of different nonlinear techniques are discussed for both transverse and longitudinal detection. The connections of effects recently presented with the procedure of longitudinal detection of electron paramagnetic resonance (LODESR) in presence of double transverse irradiation are stressed. Peculiarities of LODESR spectroscopy and its capabilities in facing problems related to relaxations in presence of very slow dynamic processes are evidentiated. Recent results show the vitality of the LODESR technique, that in the future could be applied to new fields, owing to experimental updating.  相似文献   

15.
The measurement of spin-lattice relaxation rates from spin labels, such as nitroxides, in the presence and absence of spin relaxants provides information that is useful for determining biomolecular properties such as nucleic acid dynamics and the interaction of proteins with membranes. We compare X-band continuous wave (CW) and pulsed or time domain (TD) EPR methods for obtaining spin-lattice relaxation rates of spin labels across the entire range of rotational motion to which relaxation rates are sensitive. Model nitroxides and spin-labeled biological species are used to illustrate the potential complications that arise in extracting relaxation data under conditions typical to biological experiments. The effect of super hyperfine (SHF) structure is investigated for both CW and TD spectra. First and second harmonic absorption and dispersion CW spectra of the nitroxide spin label, TEMPOL, are all fit simultaneously to a model of SHF structure over a range of microwave amplitudes. The CW spectra are novel because all harmonics and microwave phases were acquired simultaneously using our homebuilt CW/TD spectrometer. The effect of the SHF structure on the pulsed free induction decay (FID) and pulsed saturation recovery spectrum is shown for both protonated and deuterated TEMPOL. We present novel pulsed saturation recovery measurements on biological molecules, including spin-lattice relaxation rates of spin-labeled proteins and spin-labeled double-stranded DNA. The impact of structure and dynamics on relaxation rates are discussed in the context of each of these examples. Collisional relaxation rates with oxygen and transition metal paramagnetic relaxants are extracted using both continuous wave and time domain methods. The extent of the errors inherent in the CW method and the advantages of pulsed methods for unambiguously measuring collisional relaxation rates are discussed. Spin-lattice relaxation rates, determined by both CW and pulsed methods, are used to determine the electrostatic potential on the surface of a protein.  相似文献   

16.
An investigation has been made into electron spin resonance (ESR) occurring in the ranges of carbons prepared from periodate lignin by vacuum pyrolysis. Line shape, line width, g-factors, saturation effects, and free spin concentration have been measured and the effect of oxygen on these parameters has been examined. A g-shift and lines with inhomogeneous broadening have been observed. In the presence of oxygen the lower-temperature carbons showed an unexpected increase in the detectable free spin concentration. The discussion includes factors affecting the nature of the free spins in the pyrolyzed material.  相似文献   

17.
Using proton NMR relaxometry in the kilohertz frequency range, we study dynamics of 5CB liquid crystal molecules dispersed in the form of spherical microdroplets in a PDLC material. The focus of the study is the spin-lattice relaxation in the rotating frame, T1rho(-1), measured above the nematic-isotropic transition TNI. We show that the relaxation rate T1rho(-1)--when induced by uniform molecular translational diffusion in a spherical cavity--depends on the strength of the rotating magnetic field as T1rho(-1) proportional to omega1(-alpha) where alpha varies between 0.7 and 1, depending on the thickness of the ordered surface layer. This relaxation mechanism governs mainly the transverse spin relaxation, whereas the measurements of the frequency and temperature dependence of T1rho(-1) indicate a strong effect of slowing-down of molecular translational diffusion in contact with the polymer surface and yield the average dwell-time of molecules at the surface of the order 10(-5) s.  相似文献   

18.
We present two new sensitivity enhanced gradient NMR experiments for measuring interference effects between chemical shift anisotropy (CSA) and dipolar coupling interactions in a scalar coupled two-spin system in both the laboratory and rotating frames. We apply these methods for quantitative measurement of longitudinal and transverse cross-correlation rates involving interference of (13)C CSA and (13)C-(1)H dipolar coupling in a disaccharide, alpha,alpha-D-trehalose, at natural abundance of (13)C as well as interference of amide (15)N CSA and (15)N-(1)H dipolar coupling in uniformly (15)N-labeled ubiquitin. We demonstrate that the standard heteronuclear T(1), T(2), and steady-state NOE autocorrelation experiments augmented by cross-correlation measurements provide sufficient experimental data to quantitatively separate the structural and dynamic contributions to these relaxation rates when the simplifying assumptions of isotropic overall tumbling and an axially symmetric chemical shift tensor are valid.  相似文献   

19.
Dairy cream, as a suspension of lipid droplets in water, is a potentially useful magnetic resonance imaging (MRI) phantom material and an interesting material for studying fundamental relaxation mechanisms. Here we report a strong increase in the transverse relaxation rates with field strength for both the water and lipid protons in dairy cream. Also, studies at 4.7 T reveal a nonlinear response of transverse relaxation rates with increasing concentration of a common gadolinium (Gd)-based contrast agent, including an initial decrease of water relaxation rates as measured with Hahn spin echoes at the lower Gd concentrations. The results are treated within the framework of a model in which the magnetic susceptibility difference between the lipid droplets and the aqueous phase plays the prominent role for transverse relaxation. Second-order polynomial fits of the water proton transverse relaxation rate dependence on field strength and on Gd concentration at 4.7 T provided experimental parameters from which model parameters are extracted and compared with expectations available from the literature.  相似文献   

20.
We describe the ESR spectrometer we developed. Our aim was twofold: i) to reach the highest possible frequency and ii) to devise a frequency tunable spectrometer. The tunable source is an optically pumped far infrared laser which has been used from 160 GHz up to 525 GHz with magnetic fields of up to 19 T. We present measurements performed in semiconductor physics and in molecular chemical physics. These measurements allowed us to distinguish electric dipolar transitions from magnetic dipolar transitions. The increase ing-factor resolution was used to discriminate between entities withg-factors differing by a few 10?5. This property together with the study of the line-width frequency dependence was used in geophysics. We studied the spin relaxation mechanisms of the model system Phosphorus doped Silicon. The variation of the spin relaxation time with temperature shows the importance of two-phonon mechanisms. High frequency tunable ESR makes possible the study of compounds with large zero field splitting which are ESR silent at standard frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号