首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A training set of 50 tetrahydropyrimidine-2-one based inhibitors of HIV-1 protease, for which the -log K(i) values were measured, was used to construct receptor independent 4D-QSAR models. A novel clustering technique was employed to facilitate and improve model selection as well as test set predictions. Following the manifold model theory, five unique models were chosen by the clustering algorithm (q(2) = 0.81-0.84). The models were used to map the atom type morphology of the inhibitor binding site of HIV-1 protease as well as to predict the potencies (-log K(i)) of 10 test set compounds. The rank-difference correlation coefficient was used to evaluate the quality of the test set predictions, which was improved from 0.39 to 0.68 when the clustering technique was applied. The set of five models, collectively, identify the important binding characteristics of the HIV protease receptor site. This study demonstrates that the selected simple clustering technique provides a discrete algorithm for model selection, as well as improving the quality of test set, or unknown, compound prediction as determined by the rank-difference correlation coefficient.  相似文献   

2.
Receptor-dependent (RD) 4D-QSAR models were constructed for a set of 39 4-hydroxy-5,6-dihydropyrone analogue HIV-1 protease inhibitors. The receptor model used in this QSAR analysis was derived from the HIV-1 protease (PDB ID ) crystal structure. The bound ligand in the active site of the enzyme, also a 4-hydroxy-5,6-dihydropyrone analogue, was used as the reference ligand for docking the data set compounds. The optimized RD 4D-QSAR models are not only statistically significant (r(2) = 0.86, q(2) = 0.80 for four- and greater-term models) but also possess reasonable predictivity based on test set predictions. The proposed "active" conformations of the docked analogues in the active site of the enzyme are consistent in overall molecular shape with those suggested from crystallographic studies. Moreover, the RD 4D-QSAR models also "capture" the existence of specific induced-fit interactions between the enzyme active site and each specific inhibitor. Hydrophobic interactions, steric shape requirements, and hydrogen bonding of the 4-hydroxy-5,6-dihydropyrone analogues with the HIV-1 protease binding site model dominate the RD 4D-QSAR models in a manner again consistent with experimental conclusions. Some possible hypotheses for the development of new lead HIV-1 protease inhibitors can be inferred from the RD 4D-QSAR models.  相似文献   

3.
A method for performing quantitative structure-based design has been developed by extending the current receptor-independent RI-4D-QSAR methodology to include receptor geometry. The resultant receptor-dependent RD-4D-QSAR approach employs a novel receptor-pruning technique to permit effective processing of ligands with the lining of the binding site wrapped about them. Data reduction, QSAR model construction, and identification of possible pharmacophore sites are achieved by a three-step statistical analysis consisting of genetic algorithm optimization followed by backward elimination multidimensional regression and ending with another genetic algorithm optimization. The RD-4D-QSAR method is applied to a series of glucose inhibitors of glycogen phosphorylase b, GPb. The statistical quality of the best RI- and RD-4D-QSAR models are about the same. However, the predictivity of the RD- model is quite superior to that of the RI-4D-QSAR model for a test set. The superior predictive performance of the RD- model is due to its dependence on receptor geometry. There is a unique induced-fit between each inhibitor and the GPb binding site. This induced-fit results in the side chain of Asn-284 serving as both a hydrogen bond acceptor and donor site depending upon inhibitor structure. The RD-4D-QSAR model strongly suggests that quantitative structure-based design cannot be successful unless the receptor is allowed to be completely flexible.  相似文献   

4.
The ecdysteroid-responsive Drosophila melanogaster B(II) cell line is a prototypical homologous inducible gene expression system. A training set of 71 ecdysteroids, for which the -log(EC(50)) potencies in the ecdysteroid-responsive B(II) cell line were measured, was used to construct 4D-QSAR models. Four nearly equivalent optimum 4D-QSAR models, for two modestly different alignments, were identified (Q(2) = 0.76-0.80). These four models, together with two CoMFA models, were used in consensus modeling to arrive at a three-dimensional pharmacophore. The C-2 and C-22 hydroxyls are identified as hydrogen-bond acceptor sites which enhance activity. A hydrophobic site near C-12 is consistent with increasing activity. The side-chain substituents at C-17 are predicted to adopt semiextended "active" conformations which could fit into a cylinder-shaped binding pocket lined largely with nonpolar residues for enhanced activity. A test set of 20 ecdysteroids was used to evaluate the QSAR models. Two 4D-QSAR models for one alignment were identified to be superior to the others based on having the smallest average residuals of prediction for the prediction set (0.69 and 1.13 -log[EC(50)] units). The correlation coefficients of the optimum 4D-QSAR models (R(2) = 0.87 and 0.88) are nearly the same as those of the best CoMFA model (R(2) = 0.92) determined for the same training set. However, the cross-validation correlation coefficient of the CoMFA model is less significant (Q(2) = 0.59) than those of the 4D-QSAR models (Q(2) = 0.80 and 0.80).  相似文献   

5.
We report the results of a comparative molecular field analysis and comparative molecular similarity index analysis of the human farnesyl pyrophosphate synthase (FPPS) inhibition by nitrogen bisphosphonates (NBPs) taking into account their time-dependent inhibition efficacies. The 3D-QSAR models obtained provide steric, electrostatic and hydrophobic contour maps consistent with the interactions into the active site of human FPPS observed in available crystallographic structures. Furthermore, the 3D-QSAR models obtained provide accurately IC50 values of the NBPs of the training set. The predictive ability of these 3D-QSAR models was found to rely on the choice of biologically active conformations of the target molecules and on a careful examination of the protonation status of the NBPs in the training set. The best models obtained can be useful to predict biological values of a high number of NBPs that have been used for the treatment of different diseases as potential inhibitors of the activity of the FPPS enzyme.  相似文献   

6.
In the present study, we report the exploration of binding modes of potent HIV-1 integrase (IN) inhibitors MK-0518 (raltegravir) and GS-9137 (elvitegravir) as well as chalcone and related amide IN inhibitors we recently synthesized and the development of 3D-QSAR models for integrase inhibition. Homology models of DNA-bound HIV-1 IN were constructed on the basis of the X-ray crystal structure of the foamy virus IN-DNA complex (PDB ID: 3L2T ) and used for docking. The binding modes of raltegravir and elvitegravir in our homology models are in accordance with those in the foamy virus structure revealing interactions important for inhibitor-IN binding. To gain further insights into the structural requirements for IN inhibition, three-dimensional quantitative structure activity relationship (3D-QSAR) studies were conducted using raltegravir, elvitegravir, and their analogs; our synthesized 3-keto salicylic acid IN inhibitor series; as well as other structurally related HIV-1 IN inhibitors. In the first part of the study with 103 compounds, atom-fit alignments, I and II, and docking-based alignment, III, were used to develop 3D-QSAR models 1, 2, and 3, respectively, each comprising comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) 3D-QSARs. This initial analysis indicated that the docking-based (structure-based) model 3 performed better than the atom-fit (ligand-based) models 1 and 2, in terms of statistical significance and robustness. Thus, the docking-based alignment was then subsequently used with an expanded data set of 296 compounds for building a more comprehensive 3D-QSAR, model 4. Model 4 afforded good q2 values of 0.70 and 0.75 for CoMFA and CoMSIA 3D-QSARs, respectively, and showed good predictive performance on an external validation test set of 59 compounds with predictive r2 values up to 0.71. The HIV IN-DNA homology model of biological relevance and the comprehensive 3D-QSAR models developed in the present study provide insights and new predictive tools for structure-based design and optimization of IN inhibitors.  相似文献   

7.
Two three-dimensional quantitative structure-activity relationship (3D-QSAR) methods, comparative molecular field analysis (CoMFA) and hypothetical active site lattice (HASL), were compared with respect to the analysis of a training set of 154 artemisinin analogues. Five models were created, including a complete HASL and two trimmed versions, as well as two CoMFA models (leave-one-out standard CoMFA and the guided-region selection protocol). Similar r2 and q2 values were obtained by each method, although some striking differences existed between CoMFA contour maps and the HASL output. Each of the four predictive models exhibited a similar ability to predict the activity of a test set of 23 artemisinin analogues, although some differences were noted as to which compounds were described well by either model.  相似文献   

8.
9.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) models have been constructed using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for a series of structurally related steroidal alkaloids as butyrylcholinesterase (BuChE) inhibitors. Docking studies were employed to position the inhibitors into the BuChE active site to determine the most probable binding mode. The strategy was to explore multiple inhibitor conformations in producing a more reliable 3D-QSAR model. These multiple conformations were derived using the FlexS program. The conformation selection step for CoMFA was done by genetic algorithm. The genetic algorithm based CoMFA approach was found to be the best. Both CoMFA and CoMSIA yielded significant cross-validated q(2) values of 0.701 and 0.627 and the r(2) values of 0.979 and 0.982, respectively. These statistically significant models were validated by a test set of five compounds. Comparison of CoMFA and CoMSIA contour maps helped to identify structural requirements for the inhibitors and serves as a basis for the design of the next generation of the inhibitor analogues. The results demonstrate that the combination of ligand-based and receptor-based modeling with use of a genetic algorithm is a powerful approach to build 3D-QSAR models. These data can be used for the lead optimization process with respect to inhibition enhancement which is important for the drug discovery and development for Alzheimer's disease.  相似文献   

10.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) models for a series of thiazolone derivatives as novel inhibitors bound to the allosteric site of hepatitis C virus (HCV) NS5B polymerase were developed based on CoMFA and CoMSIA analyses. Two different conformations of the template molecule and the combinations of different CoMSIA field/fields were considered to build predictive CoMFA and CoMSIA models. The CoMFA and CoMSIA models with best predictive ability were obtained by the use of the template conformation from X-ray crystal structures. The best CoMFA and CoMSIA models gave q (2) values of 0.621 and 0.685, and r (2) values of 0.950 and 0.940, respectively for the 51 compounds in the training set. The predictive ability of the two models was also validated by using a test set of 16 compounds which gave r (pred) (2) values of 0.685 and 0.822, respectively. The information obtained from the CoMFA and CoMSIA 3D contour maps enables the interpretation of their structure-activity relationship and was also used to the design of several new inhibitors with improved activity.  相似文献   

11.
12.
A training set of 55 antifungal p450 analogue inhibitors was used to construct receptor-independent four-dimensional quantitative structure-activity relationship (RI 4D-QSAR) models. Ten different alignments were used to build the models, and one alignment yields a significantly better model than the other alignments. Two different methodologies were used to measure the similarity of the best 4D-QSAR models of each alignment. One method compares the residual of fit between pairs of models using the cross-correlation coefficient of their residuals of fit as a similarity measure. The other method compares the spatial distributions of the IPE types (3D-pharmacophores) of pairs of 4D-QSAR models from different alignments. Optimum models from several different alignments have nearly the same correlation coefficients, r(2), and cross-validation correlation coefficients, xv-r(2), yet the 3D-pharmacophores of these models are very different from one another. The highest 3D-pharmacophore similarity correlation coefficient between any pair of 4D-QSAR models from the 10 alignments considered is only 0.216. However, the best 4D-QSAR models of each alignment do contain some proximate common pharmacorphore sites. A test set of 10 compounds was used to validate the predictivity of the best 4D-QSAR models of each alignment. The "best" model from the 10 alignments has the highest predictivity. The inferred active sites mapped out by the 4D-QSAR models suggest that hydrogen bond interactions are not prevalent when this class of P450 analogue inhibitors binds to the receptor active site. This feature of the 4D-QSAR models is in agreement with the crystal structure results that indicate no ligand-receptor hydrogen bonds are formed.  相似文献   

13.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) modelling using comparative molecular similarity indices analysis (CoMSIA) was applied to a series of 406 structurally diverse dihydrofolate reductase (DHFR) inhibitors from Pneumocystis carinii (pc) and rat liver (rl). X-ray crystal structures of three inhibitors bound to pcDHFR were used for defining the alignment rule. For pcDHFR, a QSAR model containing 6 components was selected using leave-10%-out cross-validation (n= 240, q2 = 0.65), while a 4-component model was selected for rlDHFR (n= 237, q2 = 0.63); both include steric, electrostatic and hydrophobic contributions. The models were validated using a large test set, designed to maximise its diversity and to verify the predictive accuracy of models for extrapolation. The pcDHFR model has r2 = 0.60 and mean absolute error (MAE) = 0.57 for the test set after removing 4 outliers, and the rlDHFR model has r2 = 0.60 and MAE = 0.69 after removing 4 test set outliers. In addition, classification models predicting selectivity for pcDHFR over rlDHFR were developed using soft independent modelling by class analogy (SIMCA), with a selectivity ratio of 2 (IC50,rlDHFR/ IC50,pcDHFR) used for delimiting classes. A 5-component model including steric and electrostatic contributions has cross-validated and test set classification rates of 0.67 and 0.68 for selective inhibitors, and 0.85 and 0.72 for unselective inhibitors. The predictive accuracy of models, together with the identification of important contributions in QSAR and classification models, offer the possibility of designing potent selective inhibitors and estimating their activity prior to synthesis.  相似文献   

14.
CREB结合蛋白(CBP)和与其高度同源的P300蛋白是组蛋白乙酰化酶的两个亚型,两者通过它们的溴结构域(bromodomain,BRD)与染色质结合,目前,CBP/P300已经成为人类在肿瘤靶点领域中的研究热点。本研究基于CBP/P300溴结构域联芳基类抑制剂建立三维定量构效关系,采用比较分子力场分析法(Co MFA)和比较分子相似性指数分析法(Co MSIA)分别建立35个已知活性抑制剂的3D-QSAR模型,以确定CBP/P300溴结构域联芳基类抑制剂分子结构与生物活性之间的定量关系。Co MFA和Co MSIA模型活性数据p IC50的预测值与实验值基本一致,说明这两个模型具有较高的预测能力和统计学意义。根据Co MFA和Co MSIA模型所提供的立体场、静电场、疏水场、氢键给体场、氢键供体场等信息提出了改善此类抑制剂活性的药物设计思路,为指导设计具有更高活性的新分子和预测更加有效的CBP/P300溴结构域抑制剂提供理论依据。  相似文献   

15.
Novel potential human immunodeficiency virus (HIV) protease inhibitors were designed by a combination of nelfinavir and amprenavir motifs. The designed compounds were prepared by a facile synthetic route and their stereochemistry was further confirmed by a stereospecific synthesis from commercially available (S)-2-oxiranylmethyl m-nitrobenzenesulfonate. All compounds were tested for their ability in inhibiting HIV type 1 protease activity with the published method of reference 19. Derivatives 1a--u exhibited moderate to significant inhibitory activities in preliminary bioassay. The best compound 1a has IC50 value of 0.02 microM, comparable to that of amprenavir. A docking study on compounds 1a--u was performed using the published X-ray crystal structure of HIV type 1 protease, all compounds bound to the HIV type 1 protease in an extended conformation and the scaffoldings of the binding conformations could be aligned quite well. Comparative molecular field analysis (CoMFA) study was performed to explore the specific contributions of electrostatic and steric effects in the binding of these new compounds to HIV type 1 protease and a predictive CoMFA model was built with thirteen compounds as training set. Test analysis of other five compounds as test set demonstrated that the CoMFA model has strong predictive ability to this series of compounds. It will be very useful to further optimize the designed inhibitors.  相似文献   

16.
HIV-1 RT is one of the key enzymes in the duplication of HIV-1. Inhibitors of HIV-1 RT are classified as nonnucleoside RT inhibitors (NNRTIs) and nucleoside analogues. NNRTIs bind in a region not associated with the active site of the enzyme. Within the NNRTI category, there is a set of inhibitors commonly referred to as TIBO inhibitors. Fifty TIBO inhibitors were used in the work to build 3-D QSAR models. The two known crystal structures of complexes are used to investigate and validate the docking protocol. The results show that the docking simulations reproduce the crystal complexes very well with RMSDs of approximately 1 A and approximately 0.6 A for 1REV and 1COU, respectively. The alignment of molecules and "active" conformation selection are the key to a successful 3D-QSAR model by CoMFA. The flexible docking (Autodock3) was used on determination of "active" conformation and molecular alignment, and CoMFA and CoMSIA were used to develop 3D-QSAR models of 50 TIBOs in the work. The 3D-QSAR models demonstrate a good ability to predict the activity of studied compounds (r2 = 0.972, 0.944, q2 = 0.704, 0.776). It is shown that the steric and electrostatic properties predicted by CoMFA contours can be related to the binding structure of the complex. The results demonstrate that the combination of ligand-based and receptor-based modeling is a powerful approach to build 3D-QSAR models.  相似文献   

17.
Docking simulation and three-dimensional quantitative structure-activity relationships (3D-QSARs) analyses were conducted on four series of HDAC inhibitors. The studies were performed using the GRID/GOLPE combination using structure-based alignment. Twelve 3-D QSAR models were derived and discussed. Compared to previous studies on similar inhibitors, the present 3-D QSAR investigation proved to be of higher statistical value, displaying for the best global model r2, q2, and cross-validated SDEP values of 0.94, 0.83, and 0.41, respectively. A comparison of the 3-D QSAR maps with the structural features of the binding site showed good correlation. The results of 3D-QSAR and docking studies validated each other and provided insight into the structural requirements for anti-HDAC activity. To our knowledge this is the first 3-D QSAR application on a broad molecular diversity training set of HDACIs.  相似文献   

18.
通过分子对接和三维定量构效关系(3D-QSAR)两种方法来确定两类马来酰胺类的糖原合成酶激酶-3β(GSK-3β)抑制剂的结合方式.首先,用分子对接确定抑制剂与GSK-3β的结合模式及其相互作用;然后用比较分子力场分析法(CoMFA)与比较分子相似性指数分析法(CoMSIA)对48个化合物做三维定量构效关系的分析.两种方法得出的交互验证回归系数分别为0.669(CoMFA)和0.683(CoMSIA),证明该模型具有很好的统计相关性,同时也说明该模型具有较高的预测能力.根据该模型提供的信息,设计出9个预测性较好的分子.  相似文献   

19.
20.
通过分子对接和三维定量构效关系(3D-QSAR)两种方法来确定两类马来酰胺类的糖原合成酶激酶-3β(GSK-3β)抑制剂的结合方式. 首先, 用分子对接确定抑制剂与GSK-3β结合模式及其相互作用; 然后用比较分子力场分析法(CoMFA)与比较分子相似性指数分析法(CoMSIA)对48个化合物做三维定量构效关系的分析. 两种方法得出的交互验证回归系数分别为0.669(CoMFA)和0.683(CoMSIA), 证明该模型具有很好的统计相关性, 同时也说明该模型具有较高的预测能力.根据该模型提供的信息, 设计出9个预测活性较好的分子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号