首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The conformation of poly( N-isopropylacrylamide) chains adsorbed at a silica interface was studied as a function of concentration in the methanol-water binary solvent mixture. Both water and methanol are good solvents for PNIPAM; however, in certain mixtures cononsolvency is induced by a lowering of the LCST. This led to a decrease in the extent of the PNIPAM layer away from the interface as measured using the colloidal probe technique in the poor solvent region. At low methanol concentrations but still in the good solvent region capillary bridging between the silica surfaces with adsorbed PNIPAM layers was observed due to the increased methanol concentration in this interfacial region over that of the bulk. Furthermore, adsorption measurements showed that PNIPAM adsorbed only weakly to the silica interface with a low surface excess on the order of 0.23 mg/m (2), which allowed study of the behavior of the immobilized PNIPAM chains under highly dilute conditions using the quartz crystal microbalance. As the concentration of methanol increased toward the phase transition boundary, a slight contraction followed by an expansion of the PNIPAM was observed, which is in agreement with previous predictions from theory for polymers in solution.  相似文献   

2.
 The temperature dependence of the dimensions of poly(N-isopropylacrylamide) (PNIPAM) adsorbed on two different colloidal silica particles was studied with dynamic light scattering. The hydrodynamic diameter was measured when the temperature was varied stepwise from 10 to 60 °C. PNIPAM molecules free in solution undergo a conformational transition at the θ temperature. We have found that PNIPAM adsorbed onto silica particles also undergoes a transition below the θ temperature. When a small amount of polymer was adsorbed the coil-to-globule transition at the θ temperature did not occur. Potentiometric titrations showed that the surface charge of the silica particles was not affected by the polymer adsorption. Sodium dodecyl sulfate (SDS) (100–1200 mg/l) was added to improve the stability. The particles with a higher zeta potential required a smaller addition of SDS to prevent coagulation compared to the particles with a smaller surface potential. For low additions of SDS the transition curves of adsorbed PNIPAM were unaffected. For larger additions of SDS the collapse of PNIPAM was shifted to higher temperatures. When as much as 1200 mg/l SDS was added, two regions with weak transitions were observed before the collapse. It was also observed that the presence of SDS results in a smaller adsorption of PNIPAM onto the particles. The addition of SDS strongly increased the magnitude of the electrophoretic mobility of the polymer–particle unit. From the electrophoretic measurements an electrokinetic layer thickness was calculated and it was found to be smaller than the corresponding hydrodynamic layer thickness, as obtained by dynamic light scattering. Received: 14 December 1999/In revised form: 22 February 2000/Accepted: 6 March 2000  相似文献   

3.
张广照 《高分子科学》2009,27(4):561-567
The association of poly(N,N-diethylacrylamide)(PDEA) chains has been investigated by a combination of static and dynamic laser light scattering(LLS).Unlike poly(N-isopropylacrylamide)(PNIPAM),PDEA chains can not form the C=O…H-N hydrogen bonds.Our results demonstrate that a limited number of PDEA chains collapse and associate into metastable globules in dilute solutions.The heating rate has great effect on the mesoglobule size.The formation of such mesoglobules is attributed to the competition between in...  相似文献   

4.
Total internal reflection microscopy was used to directly measure the interaction potentials between a micron-sized silica sphere and a flat silica surface in the presence of a linear poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. When the PNIPAM concentration was low, no discernible forces were detected. A further increase in PNIPAM concentration resulted in a long-range attraction which was likely due to a combined of the reduced electrostatic interaction between the silica particle and the flat surface after the polymer adsorption and polymer bridges formation. On the other hand, for a fixed PNIPAM concentration, the interaction potential profiles between the particle and flat surface were once again characterized by attraction as temperature was increased. This attractive force can be explained in terms of the conformational changes of PNIPAM chains at the surfaces, which subsequently affected the polymer adsorption and enhanced the segment–segment interaction among the adsorbed polymer chains.  相似文献   

5.
Two polymer-surfactant mixtures have been studied at the air-water interface using neutron reflectivity and surface tension techniques. For the noninteracting system poly(N-isopropylacrylamide) (PNIPAM)/octaethyleneglycol mono n-decyl ether (C10E8), the adsorption behavior is competitive and driven purely by surface pressure (pi). When pi(polymer) > pi(surfactant), the surface layer consists of almost pure polymer, and for pi(polymer) < pi(surfactant), the polymer is displaced from the surface by the increasing pressure of the surfactant. Beyond the CMC, the polymer is completely displaced from the surface. For the interacting system PNIPAM/sodium dodecyl sulfate (SDS) where the two species interact strongly in the bulk beyond the critical aggregation concentration (CAC), the surface behavior is more original. Earlier neutron reflectivity studies investigated PNIPAM adsorption behavior where the SDS was contrast-matched to the solvent. In the present study, complementary measurements of SDS adsorption where PNIPAM is contrast-matched to the solvent give a complete view of the surface composition of the mixed system. At a constant polymer concentration, with increasing SDS, three main regimes are obtained. For C(SDS) < CAC, adsorption is governed by simple competition and PNIPAM is predominant at the interface. At intermediate SDS concentration (CAC < C(SDS) < x2, where x2 indicates the predominance of free SDS micelles), interfacial behavior is governed by bulk polymer-surfactant interaction. Adsorbed polymer is displaced from the interface to form PNIPAM-SDS complex in the bulk. SDS adsorption remains weak since most of the SDS molecules are used to form bulk polymer-surfactant aggregates. Further increase in SDS concentration results in continued displacement of PNIPAM and an abrupt increase in SDS adsorption. This is a result of saturation of bulk polymer chain with adsorbed micelles. Interestingly, beyond x2, PNIPAM is not completely displaced from the surface. A mixed PNIPAM-SDS adsorbed layer with enhanced packing of the SDS monolayer is formed.  相似文献   

6.
Combining scaling arguments and Monte Carlo simulations using the bond fluctuation method we have studied concentration effects for the adsorption of symmetric AB-random copolymers at selective, symmetric interfaces. For the scaling analysis we consider a hierarchy of two length scales given by the excess (adsorption) blobs and by two dimensional thermal blobs in the semidilute surface regime. When both length scales match, a densely packed array of adsorption blobs is formed (saturation). We show that for random copolymer adsorption the interface concentration can be further increased (oversaturation) due to reorganization of excess blobs. Crossing over this threshold results in a qualitative change in the behavior of the adsorption layer which involves a change in the average shape of the adsorbed chains towards a hairpinlike form. We have analyzed the distribution of loops and tails of adsorbed chains in the various concentration regimes as well as the chain order parameter, concentration profiles, and the exchange rate of individual chains. We emphasized the role of saturation scaling which dominates the behavior of static and dynamic quantities at higher surface concentration.  相似文献   

7.
聚(N-异丙基丙烯酰胺)水凝胶微球体积相变的研究   总被引:4,自引:0,他引:4  
高均  吴奇 《高分子学报》1997,(3):324-330
窄分散的聚(N 异丙基丙烯酰胺)水凝胶微球用乳液聚合方法制备,并用动态和静态光散射对其体积相变进行了研究.与水中聚(N 异丙基丙烯酰胺)线性单链比较,水中凝胶微球的体积相变温度较高,对温度的响应比较平缓.相变是连续的,有别于大块凝胶非连续的体积变化.在体积相变过程中,凝胶微球始终是密度均一的热力学稳定球体.从相变过程网络密度的变化可以确定,绝大部分的水在收缩过程被排了出来,但在紧缩的凝胶微球中仍含有约70%的水.  相似文献   

8.
The average density (〈ρ〉) of the pauci-chain polystyrene microlatices (PCPS), which contains a few linear polystyrene chains, was investigated by laser light scattering (LLS) including both angular dependence of absolute integrated scattered intensity (static LLS) and of the line-width distribution G(Γ) (dynamic LLS). In static LLS, the weight-average particle mass (Mw) and the z-average radius of gyration (Rg) were measured; and simultaneously in dynamic LLS, the hydrodynamic radius distribution was obtained from Laplace inversion of very precisely measured intensity-intensity time correlation function. A combination of both the static and dynamic LLS results leads us to a value of 〈ρ〉. For comparison, we also determined 〈ρ〉 of conventional multichain polystyrene latex (MCPS) by following the same LLS procedure. It was found that 〈ρ〉MCPS = 〈bulk〉 = 1.05 g/cm3, but 〈ρ〉PCPS = 0.92 g/cm3. This difference in density suggests that the intersegmental distance in MCPS or bulk polystyrene is smaller than that in PCPS, even the chains in PCPS are confined to a smaller volume. This might attribute to the fact, namely the intersegmental approaching inside PCPS is mainly the intrachain crossing which is more difficult in comparison with the interchain crossing inside MCPS or bulk polystyrene.  相似文献   

9.
We consider end-grafted chains at an adsorbing surface under good solvent conditions using Monte Carlo simulations and scaling arguments. Grafting of chains allows us to fix the surface concentration and to study a wide range of surface concentrations from the undersaturated state of the surface up to the brushlike regime. The average extension of single chains in the direction parallel and perpendicular to the surface is analyzed using scaling arguments for the two-dimensional semidilute surface state according to Bouchaud and Daoud [J. Phys. (Paris) 48, 1991 (1987)]. We find good agreement with the scaling predictions for the scaling in the direction parallel to the surface and for surface concentrations much below the saturation concentration (dense packing of adsorption blobs). Increasing the grafting density we study the saturation effects and the oversaturation of the adsorption layer. In order to account for the effect of excluded volume on the adsorption free energy we introduce a new scaling variable related with the saturation concentration of the adsorption layer (saturation scaling). We show that the decrease of the single chain order parameter (the fraction of adsorbed monomers on the surface) with increasing concentration, being constant in the ideal semidilute surface state, is properly described by saturation scaling only. Furthermore, the simulation results for the chains' extension from higher surface concentrations up to the oversaturated state support the new scaling approach. The oversaturated state can be understood using a geometrical model which assumes a brushlike layer on top of a saturated adsorption layer. We provide evidence that adsorbed polymer layers are very sensitive to saturation effects, which start to influence the semidilute surface scaling even much below the saturation threshold.  相似文献   

10.
The adsorption properties of thermosensitive graft-copolymers are investigated with the aim of developing self-assembled multilayers from these copolymers. The copolymers consist of a thermoreversible main chain of poly(N-isopropylacrylamid) and a weak polyelectrolyte, poly(2-vinylpyridine), as grafted side chains. Zeta-potential, single particle light scattering and adsorption isotherms monitor the adsorption of the thermoreversible copolymers to precoated colloidal particles. The results show a smaller surface coverage for a larger density of grafted chains. The surface coverage is discussed in terms of surface charge density in the adsorbed monolayer. Taking into account the monolayer adsorption properties, conditions are developed for the multilayer formation from these copolymers. A low pH provides a sufficient charge density of the grafted chains to achieve a surface charge reversal of the colloids upon adsorption. The charge reversal after each adsorbed layer is monitored by zeta-potential and the increase of the thickness is determined by light scattering. Stable and reproducible multilayers are obtained. The results imply that the conformation of the thermosensitive component in multilayers depends strongly on the grafting density, where the polymer with a higher grafting density adsorbs in a flat conformation while that with a lower grafting density adsorbs with more loops.  相似文献   

11.
This study concerns the effects of temperature, compression rate, and packing density on conformational properties of polystyrene-block-poly(N-isopropylacryamide) (PS-b-PNIPAM) diblock copolymer monolayers at the air/water interface using the Langmuir balance technique. The dependency of surface pressure changes on temperature and compression rate is strongly influenced by the conformations of PNIPAM chains at the interface, which can be adjusted by varying the packing density. Specifically, when loops or tails are formed at the interface, PNIPAM chains display thermosensitive properties due to hydration/dehydration and obvious dependence on compression rate. When PNIPAM chains take train conformation at the air/water interface, however, the surface pressure changes are nearly independent of temperature and compression rate because almost all segments of the PNIPAM chains are adsorbed at the interface and the nonpolar isopropyl groups are preferentially oriented toward the air. Our work reveals that one could manipulate stimuli-responsive properties of PNIPAM chains at the interface simply by adjusting the conformations of PNIPAM chains.  相似文献   

12.
The adsorption behavior of bottle-brush polymers with different charge/PEO ratio on silica was studied using optical reflectometry and QCM-D. The results obtained under different solution conditions clearly demonstrate the existence of two distinct adsorption mechanisms depending on the ratio of charge/PEO. In the case of low-charge density brush polymers (0-10 mol %), the adsorption occurs predominantly through the PEO side chains. However, the presence of a small amount of charge along the backbone (as low as 2 mol %) increases the adsorption significantly above that of the uncharged bottle-brush polymer in pure water. As the charge density of the brush polymers is increased to 25 mol % or larger the adsorption occurs predominantly through electrostatic interactions. The adsorbed layer structure was studied by measuring the layer dissipation using QCM-D. The adsorbed layer formed by the uncharged brush polymer dissipates only a small amount of energy that indicates that the brush lie along the surface, the scenario in which the maximum number of PEO side chains interact with the surface. The adsorbed layers formed by the low-charge density brush polymers (2-10 mol %) in water are more extended, which results in large energy dissipation, whereas those formed by the high-charge density brush polymers (50-100 mol %) have their backbone relatively flat on the surface and the energy dissipation is again low.  相似文献   

13.
Water-soluble nanosized semiconductor CdS particles (quantum dots, QDs) were synthesized with a protective layer of covalently grafting linear thermally sensitive poly(N-isopropylacrylamide) chains. Reversible association and dissociation of these CdS particles can be induced via an alteration of the solution temperature. The formation and fragmentation of the QD aggregates of the CdS particles were systematically investigated by laser light scattering (LLS) and confirmed by transmission electron microscopy (TEM). There exists a hysteresis during one heating-and-cooling cycle. The CdS particles stabilized with shorter PNIPAM chains (Mn=15,000 g/mol) can associate to form larger and denser spherical aggregates with a much higher aggregation number than those grafted with longer PNIPAM chains (Mn=31,000 g/mol) in the heating process. The dissociation (fragmentation) in the cooling process has two stages: initially, the aggregates dissociate as the temperature decreases, and then, the fragmentation stops over a wider temperature range before complete dissociation. We attribute such a two-stage fragmentation to a balanced effect of inter- and intrachain hydrogen bonding as well as the hydrophobic interaction between PNIPAM chains and CdS particles.  相似文献   

14.
The adsorption behavior of two examples of a weakly basic diblock copolymer, poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate) (PDMA-PDEA), at the silica/aqueous solution interface has been investigated using a quartz crystal microbalance with dissipation monitoring and an optical reflectometer. Dynamic and static light scattering measurements have also been carried out to assess aqueous solution properties of such pH-responsive copolymers. In alkaline solution, core-shell micelles are formed above the critical micelle concentration (cmc) by both copolymers, whereas the chains are molecularly dissolved (as unimers) at all concentrations in acidic solution. As a result, the adsorption behavior of PDMA-PDEA diblock copolymers on silica is strongly dependent on both the copolymer concentration and the solution pH. Below the cmc at pH 9, the cationic PDMA-PDEA copolymers adsorb as unimers and the conformation of the adsorbed polymer is essentially flat. At concentrations just above the cmc, the initial adsorption of copolymer onto the silica is dominated by the unimers due to their faster diffusion compared to the much larger micelles. Rearrangement of the adsorbed unimers and/or their subsequent displacement by micelles from solution is then observed during an equilibration period, and the final adsorbed mass is greater than that observed below the cmc. At concentrations well above the cmc, the much higher proportion of micelles in solution facilitates more effective competition for the surface at all stages of the adsorption process and no replacement of initially adsorbed unimers by micelles is evident. However, the adsorbed layer undergoes gradual rearrangement after initial adsorption. This relaxation is believed to result from a combination of further copolymer adsorption and swelling of the adsorbed layer.  相似文献   

15.
A quartz crystal microbalance with dissipation (QCM-D) has been used to determine the adsorption rate of ampicillin-resistant linear and supercoiled plasmid DNA onto a silica surface coated with natural organic matter (NOM). The structure of the resulting adsorbed DNA layer was determined by analyzing the viscoelastic properties of the adsorbed DNA layers as they formed and were then exposed to solutions of different ionic composition. The QCM-D data were complemented by dynamic light scattering measurements of diffusion coefficients of the DNA molecules as a function of solution ionic composition. The obtained results suggest that electrostatic interactions control the adsorption and structural changes of the adsorbed plasmid DNA on the NOM-coated silica surface. The adsorption of DNA molecules to the NOM layer took place at moderately high monovalent (sodium) electrolyte concentrations. A sharp decrease in solution ionic strength did not result in the release of the adsorbed DNA, indicating that DNA adsorption on the NOM-coated silica surface is irreversible under the studied solution conditions. However, the decrease in electrolyte concentration influenced the structure of the adsorbed layer, causing the adsorbed DNA to adopt a less compact conformation. The linear and supercoiled DNA had similar adsorption rates, but the linear DNA formed a thicker and less compact adsorbed layer than the supercoiled DNA.  相似文献   

16.
Aqueous solutions of tetrahydrofuran, ethanol, urea, and alpha-cyclodextrin were studied by a combination of static and dynamic laser light scattering (LLS). In textbooks, these small organic molecules are soluble in water so that there should be no observable large structures or density fluctuation in either static or dynamic LLS. However, a slow mode has been consistently observed in these aqueous solutions in dynamic LLS. Such a slow mode was previously attributed to some large complexes or supramolecular structures formed between water and these small organic molecules. Our current study reveals that it is actually due to the existence of small bubbles ( approximately 100 nm in diameter) formed inside these solutions. Our direct evidence comes from the fact that it can be removed by repeated filtration and regenerated by air injection. Our results also indicate that the formation of such nanobubbles in small organic molecule aqueous solutions is a universal phenomenon. Such formed nanobubbles are rather stable. The measurement of isothermal compressibility confirms the existence of a low density microphase, presumably nanobubbles, in these aqueous solutions. Using a proposed structural model, that is, each bubble is stabilized by small organic molecules adsorbed at the gas/water interface, we have, for the first time, estimated the pressure inside these nanobubbles.  相似文献   

17.
Poly(N-isopropylacrylamide) (PNIPAM) physisorbed on gold surfaces in aqueous solutions has been studied using a quartz crystal microbalance with dissipation monitoring (QCM-D). The adsorption isotherms of the polymer, that is, the adsorbed mass versus the concentration of PNIPAM in solution, show distinctly different behaviors at temperatures below and above a lower critical solution temperature (LCST). Below the LCST, PNIPAM forms a single compact layer in solutions with concentrations up to 100 ppm in weight; above the LCST, much thicker films of PNIPAM form in the same concentration range. Changes in the dissipation factor versus solvent concentration show a behavior similar to those in the isotherms. The difference in the adsorption behavior below and above the LCST can be qualitatively explained in terms of the conformation difference of the polymer in its swelling and collapsed states.  相似文献   

18.
The temperature-induced structural changes of a thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) layer grafted onto a silica substrate were investigated in aqueous solution using an atomic force microscope (AFM) and a quartz crystal microbalance with dissipation (QCM-D). A PNIPAM layer was grafted onto the silicon wafer surface by free radical polymerization of NIPAM to obtain a high molecular weight polymer layer with low-grafting density overall. By AFM imaging, the transition of the grafted PNIPAM chains from a brush-like to a mushroom-like state was clearly visualized: The surface images of the plate were featureless at temperatures below the LCST commensurate with a brush-like layer, whereas above the LCST, a large number of domain structures with a characteristic size of approximately 100 nm were seen on the surface. Both frequency and dissipation data obtained using QCM-D showed a significant change at the LCST. Analysis of these data confirmed that the observed PNIPAM structural transition was caused by a collapse of the brush-like structure as a result of dehydration of the polymer chains.  相似文献   

19.
The effect of Triton X-100 on the colloidal dispersion stability of CuPc-U (unsulfonated and hydrophobic) and CuPc-S (surface sulfonated and hydrophilic) particles in aqueous solutions (water and NaNO(3)) was investigated at 25 °C. Its adsorption density was determined from surfactant concentrations analyzed by an HPLC method with a UV detector. The experimental dispersion stability ratios of the particles were determined from dynamic light scattering (DLS) data, with the Rayleigh-Debye-Gans (RDG) light scattering theory. The adsorption densities of Triton X-100 on both the CuPc-U and CuPc-S increase with increasing concentration of surfactant up to the critical micelle concentration (cmc), and then reach a plateau. The maximum adsorption density Γ(m) is higher for the CuPc-U (d(h)=160 nm) than that for the CuPc-S (d(h)=90 nm). The hydrophobic chains are inferred to be adsorbed onto the surfaces, and the hydrophilic ethylene oxide chains are in a coil conformation. The W(app)-values for the CuPc-U dispersions are affected mainly by the surfactant fractional surface coverage θ. Adding NaNO(3) has no significant effect on the dispersion stability. The stabilization mechanism for the CuPc-U is inferred to be primarily steric, as expected. The stability ratios for the CuPc-S in solutions with NaNO(3) are higher than those for CuPc-U, and decrease with increasing concentration of NaNO(3), indicating that the stabilization is affected by the screening of electrostatic repulsive forces. The zeta potential is not a good predictor of the electrostatic stabilization, pointing to the need for new and improved theories.  相似文献   

20.
The temperature-responsive anion exchanger was synthesized by immobilizing the poly(N-isopropylacrylamide) (PNIPAM), a kind of the temperature-responsive polymer, on the external surface of mesoporous silica via click reaction. The structure of this synthesized composite was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), elemental analysis, and nitrogen adsorption experiment. The amount of PNIPAM immobilized on the external surface of mesoporous silica, which was calculated from the weight loss measured by thermogravimetry, increased from 5.3 wt.% to 12.9 wt.% (dry) depending on the amount of PNIPAM added in the click reaction. The adsorption-desorption behavior of methyl orange (MO) ions in this synthesized anion exchanger was affected by the temperature of aqueous solution: the MO ions were adsorbed and desorbed reversibly and repeatedly with changing the pH of the solution at 25 °C, while the amount of adsorbed MO ions remained nearly constant at about 0.05 mmol/g independent of the pH of the solution at 40 °C. Also, the amount of PNIPAM immobilized on the mesoporous silica influenced the adsorption rate of MO ions, suggesting that the adsorption rate in this composite is controlled by the diffusion of MO ions through the PNIPAM layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号