首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
以聚乙二醇(PEG-400)为还原剂,Ag NO3为前驱体,采用浸渍-还原法合成氧化石墨烯-Ag纳米粒子(GO-Ag NP)复合物,再通过共混法制备氧化石墨烯-Ag纳米粒子/聚酰亚胺(GO-Ag NP/PI)混合基质膜,用于苯/环己烷混合物的渗透汽化分离。使用透射电子显微镜、红外吸收光谱、拉曼光谱、热失重以及X射线光电子能谱等分析表征GO-Ag NP复合物、GO-Ag NP/PI混合基质膜的形貌和结构;探讨了Ag掺杂量对GO-Ag NP复合物的结构以及GO-Ag NP/PI混合基质膜的结构和渗透汽化性能的影响。结果发现,Ag+被还原形成Ag NP的同时,GO失去了部分含氧官能团;Ag掺杂破坏了GO的结构,使其无序度增加,但改善了GO-Ag NP复合物在混合基质膜中的分散性,提升了GO-Ag NP/PI混合基质膜的苯/环己烷渗透汽化性能。然而过量的Ag掺杂将使GO片层上产生Ag粒子团聚,从而降低混合基质膜的渗透汽化性能。当Ag掺杂量为15%时,GO-Ag NP/PI混合基质膜渗透汽化性能最佳,渗透通量为1 404 g·m-2·h-1,分离因子可达36.2。  相似文献   

2.
壳聚糖膜结构与乙醇/水混合液的渗透汽化性能   总被引:6,自引:4,他引:6  
用渗透汽化膜分离混合液体,纤维素、赛璐玢等作醇/水分离膜有较高的渗透通量,但分离系数低.甲壳素是广泛存在于自然界的一类天然高分子.前文报道了用甲壳素脱乙酰基的产物壳聚糖(CS)作醇/水渗透汽化(PV)分离膜,在一定的原料液浓度下具有较好的选择渗透性.本文讨论CS膜结构对乙醇/水混合液PV性能的影响,并探讨了提高选择性的途径.  相似文献   

3.
以聚乙二醇(PEG-400)为还原剂,AgNO3为前驱体,采用浸渍-还原法合成氧化石墨烯-Ag纳米粒子(GO-AgNP)复合物,再通过共混法制备氧化石墨烯-Ag纳米粒子/聚酰亚胺(GO-AgNP/PI)混合基质膜,用于苯/环己烷混合物的渗透汽化分离。使用透射电子显微镜、红外吸收光谱、拉曼光谱、热失重以及X射线光电子能谱等分析表征GO-AgNP复合物、GO-AgNP/PI混合基质膜的形貌和结构;探讨了Ag掺杂量对GO-AgNP复合物的结构以及GO-AgNP/PI混合基质膜的结构和渗透汽化性能的影响。结果发现,Ag+被还原形成AgNP的同时,GO失去了部分含氧官能团;Ag掺杂破坏了GO的结构,使其无序度增加,但改善了GO-AgNP复合物在混合基质膜中的分散性,提升了GO-AgNP/PI混合基质膜的苯/环己烷渗透汽化性能。然而过量的Ag掺杂将使GO片层上产生Ag粒子团聚,从而降低混合基质膜的渗透汽化性能。当Ag掺杂量为15%时,GO-AgNP/PI混合基质膜渗透汽化性能最佳,渗透通量为1 404 g·m-2·h-1,分离因子可达36.2。  相似文献   

4.
渗透汽化膜法汽油脱硫技术是一种新型汽油脱硫技术,具有投资和操作费用低、辛烷值损失小等显著优点,受到人们的广泛关注。本文简要介绍了渗透汽化膜法脱硫的研究背景,基于溶解-扩散模型,以溶解度参数原则为理论指导,分析了聚合物脱硫膜材料的选择,结合近二十年来文献报道的渗透汽化脱硫膜研究进展,详细介绍了用于膜法脱硫的聚合物膜材料(聚二甲基硅氧烷、聚醚嵌段酰胺、聚乙二醇、醋酸纤维素、聚酰亚胺、聚磷腈等)及有机/无机复合膜材料的结构特点、改性方法及膜材料结构与性能间的关系,并将不同膜材料的脱硫性能进行了对比研究,在此基础上总结了目前渗透汽化脱硫膜存在的问题,并对其未来的研究方向和发展前景进行了展望。  相似文献   

5.
以棉浆粕为原料,采用硫酸溶胀结合超声波处理的方法制备了纳米纤维素(NC).在纳米纤维素的水分散液中加入3,4-乙撑二氧噻吩单体,以过硫酸铵为氧化剂,采用原位化学氧化法制得了纳米纤维素/聚3,4-乙撑二氧噻吩(NC/PEDOT)纳米复合物.对NC和NC/PEDOT复合物进行扫描电镜、透射电镜和红外光谱分析.将纳米复合物的水分散液滴涂在氧化铟锡(ITO)玻璃表面形成复合薄膜,考察不同纳米纤维素含量对NC/PEDOT复合薄膜电致变色性能的影响.结果表明,NC呈棒状,平均直径为20 nm,长度为100~300nm;NC/PEDOT复合物中PEDOT均匀包覆在NC表面形成核壳结构,平均直径为30 nm;复合薄膜中当NC含量为60%时,其电致变色性能最好,具有最高的对比度(24.4%),最短的响应时间(1 s),最高的着色效率(51.8 cm~2/C).  相似文献   

6.
用聚电解质渗透汽化膜进行乙醇脱水   总被引:5,自引:1,他引:4  
渗透汽化 (PV)膜过程由于可用于有机 /有机及有机 /水的恒沸或近沸混合物的分离而成为近年来膜技术研究开发的热点[1,2 ] .德国 GFT公司所制的富马酸交联 PVA脱水膜[3] 对温度为 80℃的 80 %Et OH料液 ,其分离因子为 350 ,渗透通量为 2 0 0 g/ (m2 ·h) .优秀的分离膜要求渗透通量大 ,同时具有较高的分离因子和良好的稳定性 .因此 ,提高膜的分离性能是渗透汽化技术开发应用的关键 .周继青等 [4 ]研究了 PVA/ PVP互穿网络膜的渗透汽化性能 ,发现膜的渗透通量虽有明显提高 ,但膜的选择性下降 .聚电解质具有优良的亲水性 ,可制得高水通…  相似文献   

7.
渗透汽化芳烃/烷烃分离膜材料   总被引:1,自引:0,他引:1  
芳烃/烷烃混合物的分离在石油化工及环保领域都具有重大意义.与传统的萃取精馏等技术相比,渗透汽化膜技术以其清洁、节能和高效的优点,应用于芳烃/烷烃混合物的分离并受到重视.本文综述了渗透汽化芳烃/烷烃分离膜的研究进展,概述了渗透汽化技术的基本原理和应用,重点介绍了用于渗透汽化芳烃/烷烃分离的聚酰亚胺、聚氨酯等高分子膜材料的结构特点和分离性能.总结了膜材料的接枝、共聚和共混,添加传质促进剂的改性方法.分析了渗透汽化芳烃,烷烃分离膜材料的研究思路,在此基础上对渗透汽化芳烃/烷烃分离膜材料的研究方向和发展前景进行了展望.  相似文献   

8.
张浩  伍艳辉 《化学进展》2023,(8):1154-1167
渗透汽化是一种具有能耗低、操作简便等优点的膜分离技术,目前传统聚合物渗透汽化膜在分离性能和稳定性等方面还有欠缺。金属有机框架(MOF)是由金属离子与有机配体以自组装形式组建而成的晶态多孔材料,具有独特的性质,如对目标分子的选择性吸附和分子筛分效应,近年来许多研究表明将MOF作为填料引入聚合物基质中构筑混合基质膜(MMMs)对其渗透汽化性能有很好的促进作用。本文从MOF的不同系列出发,讨论了适用于渗透汽化混合基质膜的MOF种类,分析了MOF-聚合物混合基质膜的制备方法与改性策略,综述了该类混合基质膜在渗透汽化方面(有机溶剂脱水、从稀溶液中回收有机物、有机混合物的分离)的应用进展,总结了用于渗透汽化的MOF-聚合物混合基质膜研究面临的挑战,并对其未来发展提出展望。  相似文献   

9.
渗透汽化分离芳烃/烷烃混合体系的研究进展*   总被引:5,自引:0,他引:5  
杨立明  徐利文  郭勇 《化学进展》2001,13(4):303-309
本文对近年来应用于分离芳香烃/ 烷烃混合体系的渗透汽化(简称PV ) 膜材料, 特别是高分子材料进行了较为系统的综述, 并简要概述了渗透汽化膜分离特点、机制以及影响渗透汽化分离过程的主要因素。  相似文献   

10.
纳米银在细菌纤维素凝胶膜中的原位合成及性能表征   总被引:1,自引:0,他引:1  
在细菌纤维素纳米纤维网络结构中采用吐伦试剂与含醛基化合物原位反应生成纳米银颗粒, 制备了纳米银/细菌纤维素(n-Ag/BC)复合凝胶膜, 研究了不同反应条件对复合材料的银含量、 化学结构和晶体结构的影响以及n-Ag/BC的微观结构和纳米银在纤维素网络中的存在形态; 探讨了纳米银颗粒在纤维素网络中的形成机理; 采用伤口常见细菌之一金黄色葡萄球菌测试了n-Ag/BC的抑菌性能; 将n-Ag/BC与胎鼠表皮细胞共培养考察了材料的生物相容性. 研究结果表明, 在细菌纤维素纳米网络结构中可生成直径约为几十纳米的单质纳米银粒子; n-Ag/BC的银含量随着吐伦试剂浓度的增加而增加, 同时银含量还取决于含醛基化合物的用量; 原位反应生成纳米银粒子后细菌纤维素的晶型和结晶度没有发生变化; 纳米银颗粒在细菌纤维素纳米网络结构的交叉处生成, 复合材料n-Ag/BC对金黄色葡萄球菌的抑菌率达到99%以上, 不影响细胞的增殖和分化过程, 具有良好的生物相容性, 是一种有广阔应用前景的创伤修复抗感染材料.  相似文献   

11.
Novel nanocomposite membranes (PVA–CNT(CS)) were prepared by incorporating chitosan-wrapped multiwalled carbon nanotube (MWNT) into poly(vinyl alcohol) (PVA). To further explore the intrinsic correlation between pervaporation performance and free volume characteristics, molecular dynamics simulation was first introduced to qualitatively analyze the contribution of carbon nanotube incorporation on improving free volume characteristics of the nanocomposite membranes. Secondly, the pervaporation performance of PVA–CNT(CS) nanocomposite membranes was investigated using permeation flux and separation factor as evaluating parameters. For benzene/cyclohexane (50/50, w/w) mixtures at 323 K, permeation flux and separation factor of pure PVA membrane are only 20.3 g/(m2 h) and 9.6, respectively, while the corresponding values of PVA–CNT(CS) (CNT content: 1%) nanocomposite membrane are 65.9 g/(m2 h) and 53.4. In order to explain the simultaneous increase of permeation flux and separation factor, as well as to check the calculation reliability of molecular dynamics simulation, positron annihilation lifetime spectroscopy (PALS) analysis was employed.  相似文献   

12.
Pervaporative performances were investigated for dehydration of water–acetonitrile using nanocomposite metal oxide and Pervap® 2202 membranes. Poly (vinyl alcohol) based nanocomposite metal oxide membranes were prepared through co-precipitation of different amounts of Fe (II) and Fe (III). The freestanding nanocomposite metal oxide membranes were characterized by Transmission electron microscopy and X-ray diffraction. Sorption studies evaluated the extent of interaction and degree of swelling of the membranes. Fe containing PVA polymer matrix showed improved flux and selectivity. In order to observe simultaneous effect of flux and selectivity, pervaporation separation index showed 10 wt.% iron oxide containing membrane is the most amongst all tested. The diffusion coefficients were calculated using pervaporation results and sorption kinetics data. An attempt was made to predict sorption selectivity thermodynamically. PV separation factor was observed to be governed by sorption and/or diffusion phenomena and sorption selectivity was found to be higher than PV separation factor. Prediction of concentration profile in the membrane was also attempted and the results showed that water concentration in the membrane drops down with increase in membrane thickness.  相似文献   

13.
Novel nanocomposite polymeric membranes containing nanosized (30–100 nm) polyaniline (PANI) particles dispersed in poly(vinyl alcohol) (PVA) were prepared and used in the pervaporation separation of water–isopropanol feed mixtures ranging from 10 to 50 mass% of water at 30 °C. Of the three nanocomposite membranes prepared, the membrane containing 40:60 surface atomic concentration ratio of PANI:PVA produced the highest selectivity of 564 compared to a value of 77 observed for the plain PVA membrane. Flux of the nanocomposite membranes was lower than those observed for the plain PVA membrane, but selectivity improved considerably. Membranes were characterized by differential scanning calorimetry, dynamic mechanical thermal analyzer, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. The highest selectivity with the lowest flux was observed for 10 mass% water containing feed mixture. Flux increased with increasing amount of water in the feed, but selectivity decreased considerably. These results were attributed to the acid-doped PANI particles in the PVA membrane as a result of change in the micromorphology of the nanocomposite membranes. In addition, molar mass between cross-links and fractional free volume of the membranes are responsible for the varying membrane performance. Temperature effect on permeability was investigated for 10 mass% water containing feed with the membrane containing higher concentration of PANI particles, the presence of which could be responsible for varied effect of water permeation through the membrane. Membranes of this study could remove as much as 98% of water from the feed.  相似文献   

14.
制备了聚乙烯醇(PVA)/聚丙烯睛(PAN)渗透汽化复合膜,研究了交联剂用量、底膜结构、进料液组成、操作温度等因素对膜的渗透汽化性能的影响.发现PVA/PAN复合膜对水/醇混合液表现为水优先透过,进料液中乙醇浓度在60~99wt%的范围内,渗透通量Jt与温度之间符合Arrhenius关系,选择分离系数αW/E也随温度上升而增大.进料液为95wt%的乙醇/水混合液时,75℃下Jt高达300~450g/m2h,αW/E为800~1100.对异丙醇/水、异丁醇/水及甘油/水混合体系,复合膜显示出更为优秀的透过、分离性能.就膜的化学、物理结构与其渗透汽化性能间的关系进行了讨论.  相似文献   

15.
《先进技术聚合物》2018,29(1):84-94
In the present study, novel biodegradable nanocomposite membranes were prepared by adding the amino functionalized multiwalled carbon nanotube (NH2‐MWCNT) to the chitosan/polyvinyl alcohol blend polymers, and the obtained membranes were used for dehydration of isopropyl alcohol through pervaporation process. For this purpose, the membranes were prepared with chitosan/polyvinyl alcohol ratio of 4:1 on the basis of “solution casting” method and then crosslinked using glutaraldehyde, after addition of different amounts of NH2‐MWCNT. The prepared membranes were characterized using scanning electron microscopy, contact angle, mechanical strength, degree of swelling (DS), and biodegradability. Also, the ability of the prepared membranes in dehydration of isopropyl alcohol was determined using pervaporation experiments. Results indicated that contact angle, mechanical resistance, separation factor (α), and pervaporation separation index were increased with the addition of NH2‐MWCNT up to 10 wt% (relative to the total amount of polymer) and then decreased in the higher presence of nanotubes (15 wt%). Furthermore, the DS and permeate flux were first decreased and then increased for the same mentioned amounts of additive. In this study, optimized membrane was obtained by the addition of 10 wt% NH2‐MWCNT. This membrane showed the maximum α (99.5), pervaporation separation index parameter (78.29 kg m−2 h−1), biodegradability, and mechanical stability as well as minimum DS.  相似文献   

16.
Sulfonated cardo polyetherketone (SPEK-C) and poly(vinyl alcohol) (PVA) blend membranes were prepared by solution casting method and used in pervaporation (PV) dehydration of acetic acid. The membranes were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and contact angle meter. The results show that thermal crosslinking occurred to the membrane under high temperature annealing. The effective d-spacing (inter-segmental spacing) decreased with PVA content decreasing. The hydrophilicity of the blend membrane increased with SPEK-C content increasing. Swelling and sorption experiments show that the swelling degree of the blend membrane increased, however both the sorption and diffusion selectivities decreased with increasing PVA content. The diffusion selectivity is higher than the sorption selectivity. This suggests that PV dehydration of acetic acid is dominated by the diffusion process. The pervaporation separation index (PSI) of the membrane increases with increasing PVA content and arrives at a maximum when the SPEK-C/PVA ratio is 3/2, then decreases with further addition of PVA. The membrane has an encouraging separation performance with a flux of 492 g m−2 h−1 and separation factor of 59.3 at 50 °C at the feed water content 10 wt%.  相似文献   

17.
Poly(vinyl alcohol) (PVA) was blended with soluble polyelectrolyte complex (PEC) made from poly(diallyldimethylammonium chloride) (PDDA) and sodium carboxymethyl cellulose (CMCNa). Crystallinity, thermal transition, and thermal stability of the PVA/PEC blends were characterized by using wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and thermal gravity analysis (TGA), respectively. Surface morphology, cross-section and phase structure of the blend membranes were examined by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Surface hydrophilicity and swelling behavior of the blend membranes were examined by water contact angle (CA) and swelling tests. Blend membranes were subjected to isopropanol dehydration, and effects of blend composition, feed composition and feed temperature on pervaporation performance are discussed in terms of phase structures of blend membranes. A performance of J = 1.35 kg/m2 h, α = 1002, was obtained for blend membrane containing 50 wt% PEC in dehydrating 10 wt% water–isopropanol at 70 °C.  相似文献   

18.
Chitosan–poly(vinyl alcohol), CS–PVA, blended membranes were prepared by solution casting of varying proportions of CS and PVA. The blend membranes were then crosslinked interfacially with trimesoyl chloride (TMC)/hexane. The physiochemical properties of the blend membranes were determined using Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), tensile test and contact angle measurements. Results from ATR-FTIR show that TMC has crosslinked the blend membranes successfully, and results of XRD and DSC show a corresponding decrease in crystallinity and increase in melting point, respectively. The crosslinked CS–PVA blend membranes also show improved mechanical strength but lower flexibility in tensile testing as compared to uncrosslinked membranes. Contact angle results show that crosslinking has decreased the surface hydrophilicity of the blend membranes. The blend membrane properties, including contact angle, melting point and tensile strength, change with a variation in the blending ratio. They appear to reach a maximum when the CS content is at 75 wt%. In general, the crosslinked blend membranes show excellent stability during the pervaporation (PV) dehydration of ethylene glycol–water mixtures (10–90 wt% EG) at different temperatures (25–70 °C). At 70 °C, for 90 wt% EG in the feed mixture, the crosslinked blend membrane with 75 wt% CS shows the highest total flux of 0.46 kg/(m2 h) and best selectivity of 986. The blending ratio of 75 wt% CS is recommended as the optimized ratio in the preparation of CS–PVA blend membranes for pervaporation dehydration of ethylene glycol.  相似文献   

19.
Three different types of blend membranes based on chitosan and polyacrylic acid were prepared from homogeneous polymer solution and their performance on the pervaporation separation of water-ethanol mixtures was investigated. It was found that all membranes are highly water-selective. The temperature dependence of membrane permselectivity for the feed solutions of higher water content (>30 wt%) was unusual in that both permeability and separation factor increased with increase in temperature. This phenomenon might be explained from the aspect of activation energy and suggested that the sorption contribution to activation energy of permeation should not always be ignored when strong interaction occurs in the pervaporation membrane system.A comparison of pervaporation performance between composite and homogeneous membranes was also studied. Typical pervaporation results at 30°C for a 95 wt% ethanol aqueous solution were: for the homogeneous membrane, permeation flux = 33 g/m2 h, separation factor = 2216; and for the composite membrane, permeation flux = 132 g/m2 h, separation factor = 1008. A transport model consisting of dense layer and porous substrate in series was developed to describe the effect of porous substrate on pervaporation performance.  相似文献   

20.
《先进技术聚合物》2018,29(9):2467-2476
Poly (caprolactone) membranes with addition of different poly (ethylene glycol) concentrations were prepared for separation of water/isopropanol azeotropic mixture by pervaporation process. Different characterization tests including Fourier transform infrared, scanning electron microscopy, water contact angle, and thermogravimetric analysis were carried out on the prepared membranes. In addition, the effect of poly (ethylene glycol) PEG content on the swelling degree and the performance of the prepared membranes in pervaporation process were investigated. According to the obtained results, all the membranes were water selective and the blend membrane containing 3 wt% PEG exhibited the best pervaporation performance with a water flux of 0.517 kg/m2 hour and separation factor of 1642 at the ambient temperature. Hydrophilicity improvement of the blend membranes was confirmed by constant decrease in water contact angle of the membranes as PEG content increased in the casting solution. Scanning electron microscopy cross‐sectional images indicated that the blend membranes containing PEG had a closed cellular structure. Furthermore, mechanical and thermal properties of the membranes decreased by adding PEG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号