共查询到20条相似文献,搜索用时 0 毫秒
1.
Sergey I. Solov’ëv 《Linear algebra and its applications》2006,415(1):210-229
This paper proposes new iterative methods for the efficient computation of the smallest eigenvalue of symmetric nonlinear matrix eigenvalue problems of large order with a monotone dependence on the spectral parameter. Monotone nonlinear eigenvalue problems for differential equations have important applications in mechanics and physics. The discretization of these eigenvalue problems leads to nonlinear eigenvalue problems with very large sparse ill-conditioned matrices monotonically depending on the spectral parameter. To compute the smallest eigenvalue of large-scale matrix nonlinear eigenvalue problems, we suggest preconditioned iterative methods: preconditioned simple iteration method, preconditioned steepest descent method, and preconditioned conjugate gradient method. These methods use only matrix-vector multiplications, preconditioner-vector multiplications, linear operations with vectors, and inner products of vectors. We investigate the convergence and derive grid-independent error estimates for these methods. Numerical experiments demonstrate the practical effectiveness of the proposed methods for a model problem. 相似文献
2.
Summary For solving second order elliptic problems discretized on a sequence of nested mixed finite element spaces nearly optimal iterative methods are proposed. The methods are within the general framework of the product (multiplicative) scheme for operators in a Hilbert space, proposed recently by Bramble, Pasciak, Wang, and Xu [5,6,26,27] and make use of certain multilevel decomposition of the corresponding spaces for the flux variable. 相似文献
3.
Richard E. Ewing 《BIT Numerical Mathematics》1989,29(4):850-866
The simulation of large-scale fluid flow applications often requires the efficient solution of extremely large nonsymmetric linear and nonlinear sparse systems of equations arising from the discretization of systems of partial differential equations. While preconditioned conjugate gradient methods work well for symmetric, positive-definite matrices, other methods are necessary to treat large, nonsymmetric matrices. The applications may also involve highly localized phenomena which can be addressed via local and adaptive grid refinement techniques. These local refinement methods usually cause non-standard grid connections which destroy the bandedness of the matrices and the associated ease of solution and vectorization of the algorithms. The use of preconditioned conjugate gradient or conjugate-gradient-like iterative methods in large-scale reservoir simulation applications is briefly surveyed. Then, some block preconditioning methods for adaptive grid refinement via domain decomposition techniques are presented and compared. These techniques are being used efficiently in existing large-scale simulation codes. 相似文献
4.
In this paper we revisit the solution of ill-posed problems by preconditioned iterative methods from a Bayesian statistical inversion perspective. After a brief review of the most popular Krylov subspace iterative methods for the solution of linear discrete ill-posed problems and some basic statistics results, we analyze the statistical meaning of left and right preconditioners, as well as projected-restarted strategies. Computed examples illustrating the interplay between statistics and preconditioning are also presented. 相似文献
5.
A numerical study of the efficiency of the generalized conjugate residual methods (GCR) is performed using three different preconditioners all based upon an incomplete LU factorization. The GCR behavior is evaluated in connection with the solution of large, sparse unsymmetric systems of equations, arising from the finite element integration of the diffusion-convection equation for 2-dimensional (2-D) and 3-D problems with different Peclet and Courant numbers. The order of the test matrices ranges from 450 to 1700. Results from a set of numerical experiments are presented and comparisons with preconditioned GCR methods and with direct method are carried out. 相似文献
6.
《Applied Mathematics Letters》2006,19(11):1191-1197
When some rows of the system matrix and a preconditioner coincide, preconditioned iterations can be reduced to a sparse subspace. Taking advantage of this property can lead to considerable memory and computational savings. This is particularly useful with the GMRES method. We consider the iterative solution of a discretized partial differential equation on this sparse subspace. With a domain decomposition method and a fictitious domain method the subspace corresponds a small neighborhood of an interface. As numerical examples we solve the Helmholtz equation using a fictitious domain method and an elliptic equation with a jump in the diffusion coefficient using a separable preconditioner. 相似文献
7.
通过分析Bai(Bai Z Z.Block preconditioners for elliptic PDE-constrained optimization problems.Computing,2011,91:379-395)给出的离散分布控制问题的块反对角预处理线性系统,提出了该问题的一个等价线性系统,并且运用带有预处理子的最小残量方法对该系统进行求解.理论分析和数值实验结果表明,所提出的预处理最小残量方法对于求解该类椭圆型偏微分方程约束最优分布控制问题非常有效,尤其当正则参数适当小的时候. 相似文献
8.
Yonghong Yao Muhammad Aslam Noor Yeong-Cheng Liou 《Nonlinear Analysis: Theory, Methods & Applications》2009
In this paper, we introduce a hybrid iterative scheme for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of finitely many nonexpansive mappings. We prove that the approximate solution converges strongly to a solution of a class of variational inequalities under some mild conditions, which is the optimality condition for some minimization problem. We also give some comments on the results of Plubtieng and Punpaeng [S. Plubtieng, R. Punpaeng, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 336 (2007) 455–469]. Results obtained in this paper may be viewed as an improvement and refinement of the previously known results in this area. 相似文献
9.
Xiaoxia Zhou Yongzhong SongLi Wang Qingsheng Liu 《Journal of Computational and Applied Mathematics》2009
In this paper, we present the preconditioned generalized accelerated overrelaxation (GAOR) method for solving linear systems based on a class of weighted linear least square problems. Two kinds of preconditioning are proposed, and each one contains three preconditioners. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the convergence rate of the preconditioned GAOR methods is indeed better than the rate of the original method, whenever the original method is convergent. Finally, a numerical example is presented in order to confirm these theoretical results. 相似文献
10.
Preconditioned CG-type methods for solving the coupled system of fundamental semiconductor equations
This paper presents some of the authors' experimental results in applying Preconditioned CG-type methods to nonsymmetric systems of linear equations arising in the numerical solution of the coupled system of fundamental stationary semiconductor equations. For this type of problem it is shown that these iterative methods are efficient both in computation times and in storage requirements. All results have been obtained on an HP 350 computer. 相似文献
11.
On multilevel iterative methods for optimization problems 总被引:2,自引:0,他引:2
This paper is concerned with multilevel iterative methods which combine a descent scheme with a hierarchy of auxiliary problems in lower dimensional subspaces. The construction of auxiliary problems as well as applications to elasto-plastic model and linear programming are described. The auxiliary problem for the dual of a perturbed linear program is interpreted as a dual of perturbed aggregated linear program. Coercivity of the objective function over the feasible set is sufficient for the boundedness of the iterates. Equivalents of this condition are presented in special cases.Supported by NSF under grant DMS-8704169, AFOSR under grant 86-0126, and ONR under Contract N00014-83-K-0104. Consulting for American Airlines Decision Technologies, MD 2C55, P.O. Box 619616, DFW, TX 75261-9616, USA.Supported by NSF under grant DMS-8704169 and AFOSR under grant 86-0126. 相似文献
12.
Miloslav Vlasák 《Applications of Mathematics》2017,62(2):135-169
The aim of this work is to give an introductory survey on time discretizations for liner parabolic problems. The theory of stability for stiff ordinary differential equations is explained on this problem and applied to Runge-Kutta and multi-step discretizations. Moreover, a natural connection between Galerkin time discretizations and Runge-Kutta methods together with order reduction phenomenon is discussed. 相似文献
13.
《Journal of Computational and Applied Mathematics》1998,96(2):127-138
A class of parallel multisplitting chaotic relaxation methods is established for the large sparse linear complementarity problems, and the global and monotone convergence is proved for the H-matrix and the L-matrix classes, respectively. Moreover, comparison theorem is given, which describes the influences of the parameters and the multiple splittings upon the monotone convergence rates of the new methods. 相似文献
14.
Standard Galerkin finite element methods or finite difference methods for singular perturbation problems lead to strongly unsymmetric matrices, which furthermore are in general notM-matrices. Accordingly, preconditioned iterative methods such as preconditioned (generalized) conjugate gradient methods, which have turned out to be very successful for symmetric and positive definite problems, can fail to converge or require an excessive number of iterations for singular perturbation problems.This is not so much due to the asymmetry, as it is to the fact that the spectrum can have both eigenvalues with positive and negative real parts, or eigenvalues with arbitrary small positive real parts and nonnegligible imaginary parts. This will be the case for a standard Galerkin method, unless the meshparameterh is chosen excessively small. There exist other discretization methods, however, for which the corresponding bilinear form is coercive, whence its finite element matrix has only eigenvalues with positive real parts; in fact, the real parts are positive uniformly in the singular perturbation parameter.In the present paper we examine the streamline diffusion finite element method in this respect. It is found that incomplete block-matrix factorization methods, both on classical form and on an inverse-free (vectorizable) form, coupled with a general least squares conjugate gradient method, can work exceptionally well on this type of problem. The number of iterations is sometimes significantly smaller than for the corresponding almost symmetric problem where the velocity field is close to zero or the singular perturbation parameter =1.The 2
nd
author's research was sponsored by Control Data Corporation through its PACER fellowship program.The 3
rd
author's research was supported by the Netherlands organization for scientific research (NWO).On leave from the Institute of Mathematics, Academy of Science, 1090 Sofia, P.O. Box 373, Bulgaria. 相似文献
15.
In this paper we introduce a discretization methodology for Maxwell equations based on Mimetic Finite Differences (MFD). Following the lines of the recent advances in MFD techniques (see Brezzi et al. (2007) [14] and the references therein) and using some of the results of Brezzi and Buffa (2007) [12], we propose mimetic discretizations for several formulations of electromagnetic problems both at low and high frequency in the time-harmonic regime. The numerical analysis for some of the proposed discretizations has already been developed, whereas for others the convergence study is an object of ongoing research. 相似文献
16.
Eberhard Schock 《Numerische Mathematik》1988,54(1):91-103
Summary We study the connection between the pointwise approximation of the zero function by rational functions and iterative methods for the approximate solution of ill-posed linear equations. Results are presented on convergence, stability and saturation phenomena.Dedicated to Professor Dr. G. Hämmerlin on the occasion of his 60th birthday 相似文献
17.
Bi-parameter incremental unknowns (IU) alternating directional implicit (ADI) iterative methods are proposed for solving elliptic problems. Condition numbers of the coefficient matrices for these iterative schemes are carefully estimated. Theoretical analysis shows that the condition numbers are reduced significantly by IU method, and the iterative sequences produced by the bi-parameter incremental unknowns ADI methods converge to the unique solution of the linear system if the two parameters belong to a given parameter region. Numerical examples are presented to illustrate the correctness of the theoretical analysis and the effectiveness of the bi-parameter incremental unknowns ADI methods. 相似文献
18.
In this paper we study the semiconvergence of accelerated overrelaxation (AOR) iterative methods for the least squares solution of minimal norm of rank deficient linear systems. Necessary and sufficient conditions for the semiconvergence of the AOR and JOR iterative methods are given. The optimum parameters and the associated convergence factor are derived. 相似文献
19.
An improvement on a generalized preconditioned Hermitian and skew-Hermitian splitting method (GPHSS), originally presented by Pan and Wang (J. Numer. Methods Comput. Appl. 32, 174–182, 2011), for saddle point problems, is proposed in this paper and referred to as IGPHSS for simplicity. After adding a matrix to the coefficient matrix on two sides of first equation of the GPHSS iterative scheme, both the number of required iterations for convergence and the computational time are significantly decreased. The convergence analysis is provided here. As saddle point problems are indefinite systems, the Conjugate Gradient method is unsuitable for them. The IGPHSS is compared with Gauss-Seidel, which requires partial pivoting due to some zero diagonal entries, Uzawa and GPHSS methods. The numerical experiments show that the IGPHSS method is better than the original GPHSS and the other two relevant methods. 相似文献
20.
《Journal of Computational and Applied Mathematics》1987,17(3):271-289
In this paper we shall provide necessary and sufficient conditions for the existence and uniqueness of solutions of third-order nonlinear differential equations satisfying three-point boundary conditions. For the linear case, we propose a constructive method which is a variation of the method of chasing. For the nonlinear problems sufficient conditions are provided to ensure the convergence of a general class of iterative methods. Several examples are also included. 相似文献