首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, poly(amide-6-b-ethylene oxide) (Pebax1657)/SAPO-34 mixed matrix membranes (MMMs) were prepared by solvent-evaporation method with acetic acid as a novel solvent. CO2, N2, CH4 and H2 permeation properties were investigated, and the physical properties of Pebax/SAPO-34 MMMs were characterized by XRD and SEM. At low SAPO-34 content, it was homogeneously distributed in the Pebax ma- trix, and then precipitated and agglomerated at high SAPO-34 content. The crystallinity of Pebax phase in Pebax/SAPO-34 MMMs decreased initially and then rebounded as a result of phase separation. With the increase of transmembrane pressure difference, CO2 permeability was en- hanced due to the effect of pressure-induced plasticization. Owing to the happening of stratification, the CO2 permeability of Pebax/SAPO-34 MMMs (50 wt% SAPO-34) increased to 338 Barrer from 111 Barrer of pristine Pebax, while the selectivities of CO2/CH4 and CO2/N2 were almost unchanged. Compared with the pristine Pebax, the gas separation performances of Pebax/SAPO-34 MMMs were remarkably enhanced.  相似文献   

2.
《先进技术聚合物》2018,29(4):1334-1343
The aminated graphene oxide (GO) was prepared by the functionalization of pristine GO with ethylenediamine and then dispersed into the poly(amic acid) (the precursor of polyimide [PI]) solution followed by the chemical imidization to successfully fabricate the PI/amine‐functionalized GO mixed matrix membranes (MMMs) using in‐situ polymerization method. Chemical structure and morphology of the GO before and after amine modification were characterized by scanning electron microscopy, Raman spectrum, Fourier transform infrared, and X‐ray photoelectron spectroscopy. Scanning electron microscopy indicated that fine dispersion of GO throughout PI matrix was achieved, which indicates that the in‐situ polymerization approach can enhance the interfacial interaction between the GO and the PI matrix, and then improve the dispersion of carbon material in the polymer matrix. Compared with the conventional solution mixture method, the MMMs prepared with in‐situ polymerization method showed excellent CO2 permeability and CO2/N2 selectivity. The MMMs doped with 3 wt.% aminated GO exhibited maximum gas separation performance with a CO2 permeability of 12.34 Barrer and a CO2/N2 selectivity of 38.56. These results suggest that the amino groups on GO have strong interaction with the CO2 molecules, which can significantly increase the solubility of polar gas. Our results provide an easy and efficient way to prepare MMMs with good mechanical behavior and excellent gas separation performance.  相似文献   

3.
In this paper, poly(amide-6-b-ethylene oxide) (Pebax1657)/SAPO-34 mixed matrix membranes (MMMs) were prepared by solvent-evaporation method with acetic acid as a novel solvent. CO2, N2, CH4 and H2 permeation properties were investigated, and the physical properties of Pebax/SAPO-34 MMMs were characterized by XRD and SEM. At low SAPO-34 content, it was homogeneously distributed in the Pebax matrix, and then precipitated and agglomerated at high SAPO-34 content. The crystallinity of Pebax phase in Pebax/SAPO-34 MMMs decreased initially and then rebounded as a result of phase separation. With the increase of transmembrane pressure difference, CO2 permeability was enhanced due to the effect of pressure-induced plasticization. Owing to the happening of stratification, the CO2 permeability of Pebax/SAPO-34 MMMs (50 wt% SAPO-34) increased to 338 Barrer from 111 Barrer of pristine Pebax, while the selectivities of CO2/CH4 and CO2/N2 were almost unchanged. Compared with the pristine Pebax, the gas separation performances of Pebax/SAPO-34 MMMs were remarkably enhanced.  相似文献   

4.
Poly (ether-b-amide) (PEBA) mixed matrix membranes (MMMs) filled by different amounts of nano ZnO (up to 1 wt %) were synthesized and their gas separation performance was evaluated for CO2, CH4 and N2 pure gas and their binary mixtures. The ZnO-filled PEBA MMMs were characterized using ATR-FTIR, FESEM, AFM, TGA, DMTA, XRD and Mechanical tensile strength analyses. Generally, it was revealed that 0.5 wt % loading of ZnO into the polymer matrix caused a ZnO−PEO interaction; while ZnO–ZnO self-association hindered the interaction for the MMMs with other loadings of ZnO. As a result, PEBA-ZnO 0.5 wt % MMM possessed a higher glass transition temperature (Tg). Therefore, the CO2 permeability through PEBA-ZnO 0.5 wt % enhanced 27% than simple PEBA membrane. Moreover, all the fabricated MMMs were simulated by molecular simulation. Grand Canonical Monte Carlo (GCMC) and Molecular Dynamics (MD) methods were also applied to simulate the structural and gas transport properties of the membranes. The RDF, XRD, Tg, FFV and density analysis were compared with experimental results. Also, a binary mixture of CO2:CH4 (10:90) was used to determine CO2 permeability and CO2/CH4 selectivity, which were considerably reduced compared to single gas experiments. Moreover, the solubility of the binary gas mixture, the energy distribution and density distribution of both gases within the simulated cell were calculated by molecular simulation.  相似文献   

5.
Graphene oxide (GO) with different oxidation degrees were synthesized by harsh oxidation of graphite using the improved Hummers method. The GO/polyimide (PI) mixed matrix membrane was successfully fabricated by in situ polymerization of PI monomers (3,3′,4,4′‐biphenyltetracarboxylic dianhydride and 4,4′‐diaminodiphenyl ether) with GO. The structure of GO was characterized by Fourier transform infrared, transmission electron microscopy, atomic force microscopy, X‐ray diffraction, and thermal gravimetric analysis–differential thermal analysis. The performance of different GO/PI mixed matrix membranes was evaluated by permeation experiments of CO2/N2 gas mixture (volume ratio, 1:9). Results showed that more polar functional groups were introduced to GO with the increase in oxidation degree of GO in the preparation process, producing fewer layers and more translucent structures. GO with higher oxidation degree has significant effect on its dispersion in the N,N‐dimethylacetamide solvent and polymer matrix materials. The permeability of GO/PI hybrid membranes for CO2 and N2 increased. The CO2/N2 permeation selectivity of membranes exhibited a trend of initial increase, followed by a decrease, with the increase in oxidation degree, when the same amount of GO was added. For GO with the same oxidation degree, the permeability and permeation selectivity of hybrid membrane initially increased, and then decreased with the addition content of GO. In the case of hybrid membrane containing 1 wt% monolayer GO, the maximum permeability and permeation selectivity of hybrid membranes for CO2 were 14.3 and 4.2 times more than that of PI membrane without GO, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Two types of poly(phenylene oxide) (PPO) membranes were prepared: one by chemical modification through sulfonation using chlorosulfonic acid and another by physical incorporation with a heteropolyacid (HPA), viz., phosphotungstic acid. These membranes were tested for the separation of CO2/CH4 mixtures. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction techniques were used to confirm the modified structure of PPO as well as to understand its interactions with gaseous molecules. Scanning electron microscopy (SEM) was used to investigate the membrane morphology. Thermal stability of the modified polymers was assessed by differential scanning calorimetry (DSC), while the tensile strength was measured to evaluate their mechanical stability. Both chemical and physical modifications did not adversely affect the thermally and mechanical stabilities. Experiments with pure CO2 and CH4 gases showed that CO2 selectivity (27.2) for SPPO increased by a factor of 2.2, while the PPO–HPA membrane exhibited 1.7 times increase in selectivity with a reasonable permeability of 28.2 Barrer. An increase in flux was observed for the binary CO2/CH4 mixture permeation with an increasing feed concentration (5–40 mol%) of CO2. An enhancement in feed pressure from 5 to 40 kg/cm2 resulted in reduced CO2 permeability and selectivity due to the competitive sorption of methane. Both the modified PPO membranes were found to be promising for enrichment of methane despite exhibiting lower permeability values than the pristine PPO membrane.  相似文献   

7.
Poly(ethylene oxide)‐segmented polyurethanes (PEO‐PUs) and polyamides (PEO‐PAs) were prepared, and their morphology and CO2/N2 separation properties were investigated in comparison with those of PEO‐segmented polyimides (PEO‐PIs). The contents of the hard and soft segments in the soft and hard domains, WHS and WSH, respectively, were estimated from glass‐transition temperatures with the Fox equation. The phase separation of the PEO domains depended on the kind of hard‐segment polymer; that is, WHS was in the order PU > PA ≫ PI for a PEO block length (n) of 45–52. The larger WHS of PUs and PAs was due to hydrogen bonding between the oxygen of PEO and the NH group of urethane or amide. The CO2/N2 separation properties depended on the kind of hard‐segment polymer. Compared with PEO‐PIs, PEO‐PUs and PEO‐PA had much smaller CO2 permeabilities because of much smaller CO2 diffusion coefficients and somewhat smaller CO2 solubilities. PEO‐PUs also had a somewhat smaller permselectivity because of a smaller solubility selectivity. This was due to the larger WHS of PEO‐PUs and PEO‐PAs, that is, a greater contamination of PEO domains with hard urethane and amide units. For PEO‐PIs, with a decrease in n to 23 and 9, WHS became large and CO2 permeability decreased significantly, but the permselectivity was still at a high level of more than 50 at 35 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1707–1715, 2000  相似文献   

8.
A new Pebax-based mixed matrix membrane with amide functionalized PCP filler shows promising CO2/N2 separation at ambient temperature.  相似文献   

9.
A series of novel polyethyleneimine (PEI) modified graphene oxide (PEI-mGO) filled poly(vinyl alcohol) (PVA) nanocomposite (PEI-mGO/PVA) films were prepared by solution-casing for hydrogen gas barrier applications. Hydrophilic PEI was used to simultaneously reduce and modify graphene oxide sheets, thereby facilitating a homogeneous dispersion of PEI-mGO in the PVA matrix. The effects of PEI-mGO on the morphology and properties of the nanocomposite films were examined by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis and field emission scanning electron microscopy. Analogous GO/PVA composites were also prepared and characterized for comparative purposes. The PEI-mGO/PVA nanocomposites showed higher thermal and mechanical stability as well as remarkable improvement in hydrogen gas barrier properties compared to the PVA film; specifically, the PEI-mGO/PVA film having 3.0 wt% of PEI-mGO content exhibited almost 95% decrease in GTR and permeability values compared to PVA film.  相似文献   

10.
In this study, a poly(ether block amide) (Pebax 1657) composite membrane applied for COa capture was prepared by coating Pebax 1657 solution on polyacrylonitrile (PAN) ultrafiltration membrane. Ethanol/water mixture was used as the solvent of Pebax and the effects of ethanol/water mass ratios and Pebax concentration on the permeation properties of composite membrane were studied. To enhance the com- posite membrane permeance, the gutter layer, made from reactive amino silicone crosslinking with potydimethylsiloxane (PDMS), was de- signed. The influence of crosslinldng degree of the gutter layer on membrane performance was investigated. As a result, a Pebardamino- PDMS/PAN multilayer membrane with hexane resistance was developed, showing CO2 permeance of 350 GPU and CO2/N2 selectivity over 50. The blend of polyethylene glycol dimethyl ether (PEG-DME) with Pebax as coating material was studied to further improve the membrane performance. After being combined with PEG-DME additive, CO2 permeance of the final Pebax-PEG-DME/amino-PDMS/PAN composite membrane reached 400 GPU above with CO2/Na selectivity over 65.  相似文献   

11.
An imide‐linked covalent organic framework (COF) was successfully synthesized by directly heating a mixture of melamine and biphenyltetracarboxylic dianhydride (BPDA) in a tubular oven at 335°C. The crystalline and nanostructure of this COF was characterized by X‐ray diffraction (XRD) and Brunauer‐Emmett‐Teller (BET). A mixed matrix membrane (MMM) was prepared by blending the COF into the commercial P84 polyimide in solution. It is found that the COF particles not only act as gas channels for N2 and O2 permeation but also provided an inverse permselective property with higher permeability of N2. The effect of COF nanostructure and its loading amount on N2 and O2 permeability and selectivity has been investigated.  相似文献   

12.
The aim of current work is to study the interaction of process parameters including, temperature, CO2 feed composition and feed pressure were towards CO2 separation from CO2/CH4 binary gas mixture over hollow fiber mixed matrix membrane using design of experiment (DoE) approach. The hollow fiber mixed matrix membrane (HFMMM) containing NH2-MIL-53(Al) filler and cellulose acetate polymer was successfully spun and fibers with outer diameter of approximately 250–290 nm were obtained. The separation results revealed that the increment of temperature from 30 °C to 50 °C reduced the CO2/CH4 separation factor while, increasing feed pressure from 3 bar to 15 and increment of CO2 feed composition from 15 to 42.5 vol% increased the separation factor of HFMMM. The DoE results showed that the feed pressure was the most significant process parameter that intensely affected the CH4 permeance, CO2 permeance and CO2/CH4 separation factor. Based on the experimental results obtained, maximum CO2 permeance of 3.82 GPU was achieved at feed pressure of 3 bar, temperature of 50 °C and CO2 feed composition of 70 vol%. Meanwhile, minimum CH4 permeance of 0.01 GPU was obtained at feed pressure of 15 bar and temperature of 30 °C and CO2 feed composition of 70 vol%. Besides, maximum CO2/CH4 separation factor of 14.4 was achieved at feed pressure of 15 bar and temperature of 30 °C and CO2 feed composition of 15 vol%. Overall, the study on the interaction between separation processes parameters using central composite design (CCD) coupled with response surface methodology (RSM) possesses significant importance prior to the application of NH2-MIL-53(Al)/Cellulose Acetate HFMMM at industrial scale of natural gas purification.  相似文献   

13.
Mixed‐matrix membranes (MMMs) of Matrimid® and polyaniline/clay (PC) are investigated for CO2/CH4 separation and CO2‐induced plasticization. PC particles are synthesized through in‐situ polymerization of aniline in the presence of organophilic clay and then incorporated into Matrimid by solution casting method. Chemical structure and morphology of PC powder and fabricated membranes are analyzed by Fourier transform infrared (FTIR), X‐ray diffraction (XRD), differential scanning calorimetry/thermogravimetric analysis (DSC/TGA) and scanning electron microscopy (SEM). The XRD spectra of PC particles show the exfoliation of silicate layers throughout the polyaniline (PAni) matrix, and SEM images indicate flower‐petal morphology for PC particles. The permeability values of CO2 and CH4 increase 30–35% by incorporation of 10 wt% PC without any significant drop in selectivity. PC particles with flower‐petal morphology plays an important role in increasing the gas permeability values of both gases while Matrimid is the only phase that controls CO2/CH4 selectivity. The plasticization pressure was increased to 30 bar by incorporation of 10 wt% PC in the Matrimid matrix. CO2 permeability and pplast improved 35% and 200%, respectively, resulting in 300% enhancement in the capacity of MMM in the purification of natural gas with a selectivity of about 40. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Polyethylenimine (PEI)/poly(vinyl alcohol) (PVA) blend membranes were prepared for the facilitated transport of CO2. The polymeric carrier PEI was retained in the blend membrane by the entanglement with PVA chains. The CO2 permeance decreased with an increase in CO2 partial pressure in feed gas, whereas the N2 permeance was nearly constant. This result clearly showed that only CO2 was transported by the facilitated transport mechanism. The CO2 and N2 permeabilities increased monotonically with the PEI weight percent in the blend membrane, whereas the selectivity of CO2 over N2 showed a maximum. The selectivity increased remarkably with increasing heat-treatment temperature of the membrane. The highest selectivity obtained reached more than 230 when the CO2 partial pressure was 0.065 atm. The prepared membrane was stable.  相似文献   

15.
In this study, novel poly(imide-ethylene glycol) (PIEG) was prepared via polycondensation of ethylenediaminetetraacetic dianhydride, 4-aminophenyl sulfone, and poly(ethylene glycol) bis(amine). Later, thermally stable and mechanically robust undoped and acid-doped proton exchange membranes were prepared using the graphene oxide (GO) nanofiller. Field emission scanning electron microscope revealed a unique hexagonal imprinted morphology of the fractured surface. Increasing the GO content from 1 to 5 wt% increased tensile strength (59.7–65.9 MPa) and the modulus (20.3–23.9 GPa) of the undoped PIEG/GO series. Thermal properties of the undoped PIEG/GO 1–5 membranes were also higher, i.e., T10 = 438–487°C. However, dop-PIEG/GO 1–5 membranes have a higher ion exchange capacity (IEC) of 2.4–2.9 mmol/g and proton conductivity 1.8–2.7 S cm?1 (94% RH).  相似文献   

16.
High-performance end-group cross-linked sulfonated poly(arylene ether sulfone) (SPAES) membranes are developed using thiolate-terminated SPAES with very high degree of sulfonation (DS) such as 90 mol% (SK-SPAES90) and vinyl functionalized graphene oxide (VGO) as a cross-linker and a filler through the thiol-Michael addition reaction. Since free-standing membranes for fuel cell application could not be prepared using the water soluble and highly proton conductive SPAES with high DS of 90 mol%, cross-linked SPAES90 membranes are intentionally prepared. The cross-linked membranes are found to have good physicochemical properties with excellent proton conductivity that can be applied for the proton exchange membrane. In particular, the cross-linked SPAES90 membrane prepared using 1.0 wt% of VGO exhibits better dimensional stability than a SPAES70 membrane from the linear SPAES with DS of 70 mol% and the proton conductivities of this membrane are larger than those of Nafion 211 at 80 °C under different relative humidity conditions (40%-95%).  相似文献   

17.
18.
The results of molecular dynamics (MD) simulations on transport process of CO2 and CH4 gases in poly(ether-b- amide) (PEBAX)/nanosilica membranes are discussed. The diffusion coefficients for CH4 and CO2 gases at 6 cases with different amounts of nanosilica loading in the simulation boxes are presented. The results show that diffusion coefficients for CO2 gas in all cases are larger than those for the CH4 one. Moreover 10% nanosilica loading case shows maximum effects on diffusion coefficients and improves them by more than 68% and 157% for CO2 and CH4 gases, respectively. Additionally, the results of 3-D Cartesian trajectories and displacements curves are presented and the jumping attempt of CO2 is significantly more than that of CH4. Due to the rubbery state of PEBAX membranes in ambient temperature, the results confirm that channel lifetimes are very short and then back diffusion is not observed for this polymer.  相似文献   

19.
In this study, a novel dopamine modified graphene‐based photocatalytic membrane with Bi12O17Cl2 inserted was fabricated to modify the commercial cellulose acetate membrane via vacuum filtration method. Results showed the reduced graphene oxide (RGO)/poly(dopamine) (PDA)/Bi12O17Cl2‐CA photocatalytic composite membrane exhibited 98% removal efficiency for methylene blue (MB) within 100 minutes and 96% removal efficiency for 4‐CP within 160 minutes. Importantly, the photocatalytic composite membrane can simultaneously achieve dye degradation and oil‐water separation in only one device within a short time. And the as‐prepared membrane displayed great antifouling performance and recyclability after 10 cycles. Meanwhile, the membrane showed excellent stability in the agitated water bath or different pH conditions. In summary, the photocatalytic membrane investigated in this study opens new avenue for treatment of wastewater.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号