首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mixed matrix membranes (MMMs) containing graphene-based fillers have attracted considerable attention in the field of gas separation. In this study, two types of graphene derivatives (Graphene (G) and Graphene Oxide (GO)) were embedded into the poly-ether-block-amide (Pebax) based MMM to investigate and compare CO2/N2 separation at various filler loadings (0.3–1 wt%). The morphologies of the prepared neat Pebax and MMMs were characterized by SEM, XRD, FTIR and DSC. Compared with the neat Pebax, the permeability of all gases was increased by adding filler content in the MMMs due to the crystallinity decrement of the polyamide (PA) segment. The best separation performance of the Pebax/G MMMs occurred at 0.7 wt%, where the CO2 permeability increased from 26.51 to 44.78 Barrer (~1.7 times). Also, for the Pebax/GO MMMs, the CO2 permeability was increased up to 58.96 Barrer (~2.2 times) by adding 0.5 wt% filler. This further gas permeation increment for the Pebax/GO sample was attributed to the higher affinity of GO nanosheets to CO2 sorption, which can facilitate CO2 gas transition through the membrane matrix. Moreover, the CO2/N2 ideal selectivity increased from 74.26 for the neat Pebax to 111.95 (~1.5 times) and 120.72 (~1.62 times) by adding 0.7 wt% G (Pebax/G-0.7) and 1 wt% GO (Pebax/GO-1) into Pebax, respectively. As a consequence, graphene derivatives can be recognized as a promising developer of permselectivity (permeability and selectivity) of the MMMs.  相似文献   

2.
In this paper, poly(amide-6-b-ethylene oxide) (Pebax1657)/SAPO-34 mixed matrix membranes (MMMs) were prepared by solvent-evaporation method with acetic acid as a novel solvent. CO2, N2, CH4 and H2 permeation properties were investigated, and the physical properties of Pebax/SAPO-34 MMMs were characterized by XRD and SEM. At low SAPO-34 content, it was homogeneously distributed in the Pebax matrix, and then precipitated and agglomerated at high SAPO-34 content. The crystallinity of Pebax phase in Pebax/SAPO-34 MMMs decreased initially and then rebounded as a result of phase separation. With the increase of transmembrane pressure difference, CO2 permeability was enhanced due to the effect of pressure-induced plasticization. Owing to the happening of stratification, the CO2 permeability of Pebax/SAPO-34 MMMs (50 wt% SAPO-34) increased to 338 Barrer from 111 Barrer of pristine Pebax, while the selectivities of CO2/CH4 and CO2/N2 were almost unchanged. Compared with the pristine Pebax, the gas separation performances of Pebax/SAPO-34 MMMs were remarkably enhanced.  相似文献   

3.
In this work, the films of poly(ether-block-amide) (Pebax 1657) and hydrophilic/hydrophobic silica nanoparticles (0–10 wt%) were coated on a poly(vinyl chloride) (PVC) ultrafiltration membrane to form new mixed matrix composite membranes (MMCMs) for CO2/N2 separation. The membranes were characterized by SEM, FTIR, DSC and XRD. Successful formation of a non-porous defect-free dense top layer with ~4 μm of thickness and also uniform dispersion of silica nanoparticles up to 8 wt% loading in Pebax matrix were confirmed by SEM images. The gas permeation results showed an increase in the permeance of all gases and an increase in ideal CO2/N2 selectivity with the increase in silica nanoparticle contents. Comparison between the incorporation of hydrophilic and hydrophobic silica nanoparticle into Pebax matrix revealed that the great enhancement of CO2 solubility is the key factor for the performance improvement of Pebax + silica nanoparticle membranes. The best separation performance of the hydrophilic silica nanoparticle-incorporated Pebax/PVC membrane for pure gases (at 1 bar and 25 °C) was obtained with a CO2 permeability of 124 barrer and an ideal CO2/N2 selectivity of 76, i.e., 63 and 35% higher than those of neat Pebax membrane, respectively. The corresponding values for hydrophobic silica nanoparticle-incorporated Pebax/PVC membrane were 107 barrer for CO2 permeability and 61 for ideal CO2/N2 selectivity. Also the performances of MMCMs improved upon pressure increase (1–10 bar) owing to the shift in plasticizing effect of CO2 towards the higher pressures. In addition, an increase in permeabilities with a decrease in ideal selectivity was observed upon temperature increase (25–50 °C) due to the intensification of chain mobility.  相似文献   

4.
Poly(vinylalcohol) (PVA)/poly(ethyleneimine) (PEI)/poly(ethyleneglycol) (PEG) blend membranes were prepared by solution casting followed by solvent evaporation. The effects of the blend polymer composition on the membrane structure and CO2/N2 permeation characteristics were investigated. IR spectroscopy evidenced strong hydrogen bonding interactions between amorphous PVA and PEI, and weaker interactions between PVA and PEG. DSC studies showed that PVA crystallization was partially inhibited by the interactions between amorphous PVA and PEI blend, in which PEG separated into nodules. The CO2 permeability decreased with an increase in CO2 partial pressure in feed gas, while the N2 permeability remained constant. This result indicated that only CO2 was transported by the facilitated transport mechanism. The CO2 and N2 permeabilities increased monotonically with the PEI content in the blend membranes, whereas the ideal selectivity of CO2 to N2 transport showed a maximum. When CO2 is humidified, its permeability through the blend membranes is much higher than that of dry CO2, but the change in permeability due to the presence of humidity is reversible.  相似文献   

5.
The effect of polyethyleneglycol (PEG) on gas permeabilities and selectivities was investigated in a series of miscible cellulose acetate (CA) blend membranes. The permeabilities of CO2, H2, O2, CH4, N2 were measured at temperatures from 30 to 80°C and pressures from 20 to 76 cmHg using a manometric permeation apparatus. It was determined that the blend membrane having 10 wt% PEG20000 exhibited higher permeability for CO2 and higher permselectivity for CO2 over N2 and CH4 than those of the membranes which contained 10% PEG of the molecular weight in the range 200–6000. The CA blend containing 60 wt% PEG20000 showed that its permeability coefficients of CO2 and ideal separation factors for CO2 over N2 reached above 2 × 10−8 [cm3 (STP) cm/cm2 s cmHg] and 22, respectively, at 70°C and 20 cmHg. Based on the data of gas permeability coefficients, time lags and characterization of the membranes, it is proposed that the apparent solubility coefficients of all CA and PEG blend membranes for CO2 were lower than those of the CA membrane. However, almost all the blend membranes containing PEG20000 showed higher apparent diffusivity coefficients for CO2, resulting in higher permeability coefficients of CO2 with relation to those of the CA membrane. It is attributed to the high diffusivity selectivities of CA and PEG20000 blend membranes that their ideal separation factors for CO2 over N2 were higher than those of the CA membrane in the range 50–80°C, even though the ideal separation factors of almost all PEG blend membranes for CO2 over CH4 became lower than those of the CA membrane over nearly the full range from 30° to 80°C.  相似文献   

6.
Three phase Pebax~? MH 1657/PEG-ran-PPG/CuBTC(polymer/liquid/solid) was successfully deposited as a selective layer on a porous Polysulfone(PSF) support. In fact, the beneficial properties of PEG(high selectivity) with those of PPG(high permeability, amorphous) have been combined with superior properties of mixed matrix membrane(MMMs). The membranes were characterized by DSC, TGA and SEM, while CuBTC was characterized by CO_2 and CH_4adsorption test. Statistically based experimental design(central composite design, CCD) was applied to analyze and optimize the effect of PEG-ran-PPG(10–50 wt%) and CuBTC(0–20 wt%) mass contents on the CO_2 permeance and CO_2/CH_4 ideal selectivity. Based on the regression coefficients of the obtained models, the CO_2 permeance was notably influenced by PEG-ran-PPG,while CuBTC has the most significant effect on the CO_2/CH_4 ideal selectivity. Under the optimum conditions(PEG-ran-PPG: 32.76 wt% and CuBTC: 20 wt%), nearly 620% increase in the CO_2 permeance and43% enhancement in the CO_2/CH_4 ideal selectivity was observed compared to the neat Pebax. The effect of pressure(3, 9 and 15 bar) on the pure and mixed gas separation performance of the composite membranes was also investigated. The high solubility of CO_2 in the membranes resulted in the enhancement of CO_2 permeability with increase in gas pressure.  相似文献   

7.
Poly(vinylalcohol)/poly(ethyleneglycol)/poly(ethyleneimine) blend membranes were prepared by solution casting followed by solvent evaporation. The chemical structure of the prepared membranes was analyzed by FTIR and DSC. The sorption behavior as well as the permeabilities of the membranes for pure CO2 and N2 were investigated. The results show that the PVA/PEI/PEG membranes possess a higher permeability of CO2 and a lower permeability of N2. The membrane displays a CO2 permeability of 27 Barrer, and a N2 permeability of 3 Barrer at 25°C and 1 bar. CO2 sorption behavior of the composite membrane, which can be classified as a dual-mode sorption model, and N2 sorption behavior of the copolymeric membrane is in agreement with the Fickian diffusion model.   相似文献   

8.
The effect of graphene oxide (GO) nanosheets on the CO2/CH4 separation performance of a rubbery (poly(dimethylsiloxane), PDMS) as well as a glassy (polyetherimide, PEI) polymer is studied. Interfacial interactions between the nanosheets and both polymers are revealed by FTIR and SEM. The results of gas permeation through the membranes demonstrate that GO nanosheets enhance CO2/CH4 diffusivityselectivity of PEI and CO2/CH4 solubility-selectivities of the PEI and PDMS polymers, while diminish CO2/CH4 diffusivity-selectivity of PDMS. Furthermore, the possibility of overcoming the common tradeoff between CO2 permeability and CO2/CH4 selectivity of rubbery and glassy polymers by incorporating very low amounts of graphene oxide nanosheets is addressed. In other words, at 0.25 wt % GO loading, the PEI membrane shows simultaneous enhancement of CO2 permeability (16%) and CO2/CH4 selectivity (59%). Also, for the PDMS membrane simultaneous enhancement of CO2 permeability (29%) and CO2/CH4 selectivity (112%) is occurred at 0.5 wt % GO loading. Finally, the capability of the well known Nielsen model to predict the gas permeability behavior of the nanocomposites is investigated.  相似文献   

9.
Graphene oxide (GO) with different oxidation degrees were synthesized by harsh oxidation of graphite using the improved Hummers method. The GO/polyimide (PI) mixed matrix membrane was successfully fabricated by in situ polymerization of PI monomers (3,3′,4,4′‐biphenyltetracarboxylic dianhydride and 4,4′‐diaminodiphenyl ether) with GO. The structure of GO was characterized by Fourier transform infrared, transmission electron microscopy, atomic force microscopy, X‐ray diffraction, and thermal gravimetric analysis–differential thermal analysis. The performance of different GO/PI mixed matrix membranes was evaluated by permeation experiments of CO2/N2 gas mixture (volume ratio, 1:9). Results showed that more polar functional groups were introduced to GO with the increase in oxidation degree of GO in the preparation process, producing fewer layers and more translucent structures. GO with higher oxidation degree has significant effect on its dispersion in the N,N‐dimethylacetamide solvent and polymer matrix materials. The permeability of GO/PI hybrid membranes for CO2 and N2 increased. The CO2/N2 permeation selectivity of membranes exhibited a trend of initial increase, followed by a decrease, with the increase in oxidation degree, when the same amount of GO was added. For GO with the same oxidation degree, the permeability and permeation selectivity of hybrid membrane initially increased, and then decreased with the addition content of GO. In the case of hybrid membrane containing 1 wt% monolayer GO, the maximum permeability and permeation selectivity of hybrid membranes for CO2 were 14.3 and 4.2 times more than that of PI membrane without GO, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Poly(ether-block-amide)/g-PTAP mixed matrix membranes (MMMs) were developed by incorporating different wt.% (1–10%) of a novel 2D g-PTAP nanofiller and its effects on membrane structure and gas permeability were studied. The novel 2D material g-PTAP was synthesized and characterized by various analytical techniques including field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Raman spectroscopy. The fabricated MMMs were investigated to study the interaction and compatibility between Pebax and g-PTAP. The MMMs showed an effective integration of g-PTAP nanofiller into the Pebax matrix without affecting its thermal stability. Gas permeation experiments with MMMs showed improved CO2 permeability and selectivity (CO2/N2) upon incorporation of g-PTAP in the Pebax polymer matrix. The maximum CO2 permeability enhancement from 82.3 to 154.6 Barrer with highest CO2/N2 selectivity from 49.5 to 83.5 were found with 2.5 wt.% of nanofiller compared to neat Pebax membranes.  相似文献   

11.
Organic-inorganic hybrid materials were prepared by reacting 3-isocyanatopropyltriethoxysilane (IPTS) with hydroxyl terminated poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG) and poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) (PEPG), followed by hydrolysis and condensation with acid catalysis. Composite membranes have been obtained by casting hybrid sol on the microporous polysulfone substrate. The membranes were characterized by Fourier transform infrared (FT-IR), 13C NMR and 29Si NMR. The permeability coefficients of N2, O2, CH4 and CO2 were measured by variable volume method. The gas permeability coefficients increase with increasing molecular weight of the polyethers. For the membranes containing PEG and PEPG, the higher values of CO2 permeability coefficients and CO2/N2 separation factors are due to the presence of ethylene oxide segments. In case of PEPG membranes, molecular weight has more influence on CO2 permeability than the effect of facilitation by ethylene oxide. The addition of TEOS into hybrid sol results in the decrease of all the gas permeability and does not affect the gas selectivity. PEG2000 membrane display the most performance among the hybrid membranes investigated here. The best values observed are CO2 permeability of 94.2 Barrer with selectivity of 38.3 for CO2/N2 and 15.6 for CO2/CH4.  相似文献   

12.
Poly(4-methyl-2-pentyne) (PMP) has been crosslinked using 4,4′-(hexafluoroisopropylidene) diphenyl azide (HFBAA) to improve its chemical and physical stability over time. Crosslinking PMP renders it insoluble in good solvents for the uncrosslinked polymer. Gas permeability and fractional free volume (FFV) decreased as crosslinker content increased, while gas sorption was unaffected by crosslinking. Therefore, the reduction in permeability upon crosslinking PMP was due to decrease in diffusion coefficient. Compared to the pure PMP membrane, the permeability of the crosslinked membrane is initially reduced for all gases tested due to the crosslinking. By adding nanoparticles (FS, TiO2), the permeability is again increased; permeability reductions due to crosslinking could be offset by adding nanoparticles to the membranes. Increased selectivity is documented for the gas pairs O2/N2, H2/N2, CO2/N2, CO2/CH4 and H2/CH4 using crosslinking and addition of nanoparticles. Crosslinking is successful in maintaining the permeability and selectivity of PMP membranes and PMP/filler nanocomposites over time.  相似文献   

13.
Polyethylenimine (PEI)/poly(vinyl alcohol) (PVA) blend membranes were prepared for the facilitated transport of CO2. The polymeric carrier PEI was retained in the blend membrane by the entanglement with PVA chains. The CO2 permeance decreased with an increase in CO2 partial pressure in feed gas, whereas the N2 permeance was nearly constant. This result clearly showed that only CO2 was transported by the facilitated transport mechanism. The CO2 and N2 permeabilities increased monotonically with the PEI weight percent in the blend membrane, whereas the selectivity of CO2 over N2 showed a maximum. The selectivity increased remarkably with increasing heat-treatment temperature of the membrane. The highest selectivity obtained reached more than 230 when the CO2 partial pressure was 0.065 atm. The prepared membrane was stable.  相似文献   

14.
《先进技术聚合物》2018,29(4):1334-1343
The aminated graphene oxide (GO) was prepared by the functionalization of pristine GO with ethylenediamine and then dispersed into the poly(amic acid) (the precursor of polyimide [PI]) solution followed by the chemical imidization to successfully fabricate the PI/amine‐functionalized GO mixed matrix membranes (MMMs) using in‐situ polymerization method. Chemical structure and morphology of the GO before and after amine modification were characterized by scanning electron microscopy, Raman spectrum, Fourier transform infrared, and X‐ray photoelectron spectroscopy. Scanning electron microscopy indicated that fine dispersion of GO throughout PI matrix was achieved, which indicates that the in‐situ polymerization approach can enhance the interfacial interaction between the GO and the PI matrix, and then improve the dispersion of carbon material in the polymer matrix. Compared with the conventional solution mixture method, the MMMs prepared with in‐situ polymerization method showed excellent CO2 permeability and CO2/N2 selectivity. The MMMs doped with 3 wt.% aminated GO exhibited maximum gas separation performance with a CO2 permeability of 12.34 Barrer and a CO2/N2 selectivity of 38.56. These results suggest that the amino groups on GO have strong interaction with the CO2 molecules, which can significantly increase the solubility of polar gas. Our results provide an easy and efficient way to prepare MMMs with good mechanical behavior and excellent gas separation performance.  相似文献   

15.
In this investigation, polymeric nanocomposite membranes(PNMs) were prepared via incorporating zinc oxide(ZnO) into poly(ether-block-amide)(PEBAX-1074) polymer matrix with different loadings. The neat membrane and nanocomposite membranes were prepared via solution casting and solution blending methods, respectively. The fabricated membranes were characterized by field emission scanning electron microscopy(FESEM) to survey cross-sectional morphologies and thermal gravimetric analysis(TGA)to study thermal stability. Fourier transform infrared(FT-IR) and X-ray diffraction(XRD) analyses were also employed to identify variations of the chemical bonds and crystal structure of the membranes, respectively. Permeation of pure gases, CO_2, CH_4 and N_2 through the prepared neat and nanocomposite membranes was studied at pressures of 3–18 bar and temperature of 25 °C. The obtained results showed that the fabricated nanocomposite membranes exhibit better separation performance compared to the neat PEBAX membrane in terms of both permeability and selectivity. As an example, at temperature of 25 °C and pressure of 3 bar, CO_2 permeability, ideal CO_2/CH_4 and CO_2/N_2 selectivity values for the neat PEBAX membrane are 110.67 Barrer, 11.09 and 50.08, respectively, while those values are 152.27 Barrer,13.52 and 62.15 for PEBAX/ZnO nanocomposite membrane containing 8 wt% ZnO.  相似文献   

16.
In this study a thin film composite (TFC) membrane with a Pebax/Task-specific ionic liquid (TSIL) blend selective layer was prepared. Defect-free Pebax/TSIL layers were coated successfully on a polysulfone ultrafiltration porous support with a polydimethylsiloxane (PDMS) gutter layer. Different parameters in the membrane preparation (e.g. concentration, coating time) were investigated and optimized. The morphology of the membranes was studied by scanning electron microscopy (SEM), while the thermal properties and chemical structures of the membrane materials were investigated by thermo-gravimetric analyzer (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The CO2 separation performance of the membrane was evaluated using a mixed gas permeation test. Experimental results show that the incorporation of TSIL into the Pebax matrix can significantly increase both CO2 permeance and CO2/N2 selectivity. With the presence of water vapor, the membrane exhibits the best CO2/N2 selectivity at a relative humidity of around 75%, where a CO2 permeance of around 500 GPU and a CO2/N2 selectivity of 46 were documented. A further increase in the relative humidity resulted in higher CO2 permeance but decreased CO2/N2 selectivity. Experiments also show that CO2 permeance decreases with a CO2 partial pressure increase, which is considered a characteristic in facilitated transport membranes.  相似文献   

17.
In this study, graphene nanosheets (GNs) were incorporated into polyethersulfone (PES) by phase inversion approach for preparing PES-GNs mixed matrix membranes (MMMs). To investigate the impact of filler content on membrane surface morphology, thermal stability, chemical composition, porosity and mechanical properties, MMMs were constructed with various GNs loadings (0.01, 0.02, 0.03, and 0.04 wt%). ?The performance of prepared MMMs was tested for separation and selectivity of CO2, N2, H2 and CH4 gases at various pressures from 1 to 6 bar and temperature varying from 20 to 60 °C. It was observed that, compared to the pristine PES membrane, the prepared MMMs significantly improved the gas separation and selectivity performance with adequate mechanical stability. The permeability of CO2, N2, H2 and CH4 for the PES + 0.04 wt% GNs increases from 9 to 2246, 11 to 2235, 9 to 7151, and 3 to 4176 Barrer respectively, as compared with pure PES membrane at 1 bar and 20 °C due to improving the membrane absorption and porosity. In addition, by increasing the pressure, the permeability and selectivity of CO2, N2, H2 and CH4 are increased due to the increased driving force for the transport of gas via membranes. Furthermore, the permeability of CO2, N2, H2 and CH4 increased by increasing the temperature from 20 to 60 °C due to the plasticization in the membranes and the improvement in polymer chain movement. This result proved that the prepared membranes can be used for gas separation applications.  相似文献   

18.
Mixed matrix membranes (MMMs) made from inorganic fillers and polymers is a kind of promising candidate for gas separation. In this work, two‐dimensional MXene nanosheets were synthesized and incorporated into a polyether‐polyamide block copolymer (Pebax) matrix to fabricate MMM for CO2 capture. The physicochemical properties of MXene nanosheets and MXene/Pebax membranes were studied systematically. The introduction of MXene nanosheets provided additional molecular transport channels and meanwhile enhanced the CO2 adsorption capacity, thereby enhancing both the CO2 peremance and CO2/N2 selectivity of Pebax membrane. The optimized MXene/Pebax membrane with a MXene loading of 0.15 wt % displayed a high separation performance with a CO2 permeance of 21.6 GPU and a CO2/N2 selectivity of 72.5, showing potential application in CO2 capture.  相似文献   

19.
《Arabian Journal of Chemistry》2020,13(12):8979-8994
Mixed matrix membranes (MMMs) fabricated with porous metal organic frame works have enhanced the separation performance of polymer membranes. In this context microporous 3D Tb(BTC)(H2O).(DMF)1.1 MOF was incorporated into pristine Matrimid® with loadings of 10, 20 and 30 weight percentages. SEM micrographs indicated proper distribution of filler in the Matrimid and no interfacial voids were observed. Gas permeation studies evidenced the CO2 permeability to be 13.2 (82.32%) and 18.34 (153.31%) and 25.86 Barrer for 10, 20 and 30 wt% MMMs respectively. The 257.18% increase in CO2 permeability of 30 wt% MMM than methane was attributed to polar nature of CO2, its smaller kinetic diameter, condensability, and larger solubility within the Matrimid matrix than non – polar and larger CH4 molecules.Addition of filler influenced the pure gas selectivity of all MMMs positively. So, 30 wt% MMM exhibited the highest 58.04% increase in selectivity that was attributed to the molecular sieving property of the filler and the size exclusion phenomena as followed by CH4 and CO2. The high values of mixed and pure gas selectivity were obtained upon increasing filler concentration. The commercial applicability of these MMMs was tested by checking their selectivity under increased feed concentrations of CO2 and checking permeability and selectivities at high temperatures. The study depicted that, competitive sorption of gases, prevalence of size exclusion phenomena and polymer chains relaxation at higher temperature were responsible for low gas selectivity. MMM with 30 wt% of MOF lied close to Robson’s Upper bound 2008 that indicated its good separation potential.  相似文献   

20.
Polymeric membranes were prepared by blending different grades of poly(ethylene glycol) (PEG) as the added polymer with acrylonitrile–butadiene–styrene as the backbone structure. The membranes were characterized by Fourier transform infrared, X‐ray diffractometry, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Furthermore, the gas permeation and separation properties of CO2/CH4 were studied. In addition, the effect of pressure (1–8 bar) and the effect of PEG content (0–40 wt%) on CO2 and CH4 permeability/selectivity were investigated. The results showed that, in more cases, with the introduction of PEG molecules, CO2/CH4 selectivity increases without significant changes in CH4 permeability, indicating that the incorporation of intermolecular interaction is suitable for the separation of gas pairs with no molecular size domination but the solution–diffusion. From the viewpoint of gas separation applications, the resultant data are in the commercially attractive region. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号