首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The oxidation of hydrazine on the clean Pt(111) surface has been investigated by temperature-programmed reaction spectroscopy (TPRS) in the temperature range 130–800 K. Direct reaction of molecular oxygen is observed on the Pt(111) surface for the first time, as indicated by the desorption of nitrogen beginning at 130 K with a maximum rate at 145 K, below the molecular oxygen dissociation temperature. Direct reaction of hydrazine with adsorbed molecular oxygen results in the formation of water and nitrogen. With excess hydrazine, all surface oxygen is reacted, forming water. When only adsorbed atomic oxygen is present, the low-temperature nitrogen yield decreases by a factor of 3 and the peak nitrogen desorption temperature increases to 170 K. No high-temperature (450–650 K) nitrogen desorption characteristic of nitrogen atom recombination is seen, indicating that during oxidation the nitrogen-nitrogen bond in hydrazine remains intact, as observed previously for hydrazine decomposition on the Pt(111) surface and hydrazine oxidation on rhodium. Two water desorption peaks are observed, characteristic of desorption-limited (175 K) and reaction-limited (200 K) water evolution from the Pt(111) surface. For low coverages of hydrazine, only the reaction-limited water desorption is observed, previously attributed to water formed from adsorbed hydroxyl groups. When excess hydrazine is adsorbed, the usual hydrazine decomposition products, H2, N2 and NH3, are also observed. No nitrogen oxide species (NO, NO2 and N2O) were observed in these experiments, even when excess oxygen was available on the surface.  相似文献   

3.
Qi L  Qian X  Li J 《Physical review letters》2008,101(14):146101
The charge state of paramagnetic or nonmagnetic O2 adsorbed on a Pt(111) surface is analyzed using density functional theory. We find no significant charge transfer between Pt and the two adsorbed molecular precursors, suggesting these oxygen reduction reaction (ORR) intermediates are nearly neutral, and changes in magnetic moment come from self adjustment of O2 spin-orbital occupations. Our findings support a greatly simplified model of electrocatalyzed ORR, and also point to more subtle pictures of adsorbates or impurities interacting with crystal than literal integer charge transfers.  相似文献   

4.
5.
6.
We have used temperature-programmed desorption with isotopically labeled gases to study O exchange between gas phase NO and adsorbed atomic O on Pt(335). We find two distinct types of adsorbed O, one of which exchanges at least 40 times faster than the other, at room temperature. Based on their relative concentrations, we tentatively identify the more active species as O at the step edge and the less active one as O at terrace sites. The temperature dependence of the faster exchange rate implies two parallel reaction pathways. Above 240 K, the exchange rate increases with temperature with an apparent activation energy of 3.8 kcal mol−1. At lower temperatures the exchange rate is nearly temperature-independent, with an apparent activation energy near zero but a very low pre-exponential factor. These results are interpreted in terms of a competition between oxygen exchange and NO desorption. The low-temperature process probably requires special sites or adsorbate configurations. The room temperature exchange rates of O2 gas with preadsorbed atomic O, and with NO at edge sites, are more than 100 times slower than for NO gas and adsorbed O.  相似文献   

7.
Oxygen adsorption on the Pt(100) and Pt(111) surfaces was investigated using X-ray photo-emission and thermal desorption spectroscopies. Low pressure (ca. 10?5 Pa) oxygen dosing at near ambient crystal temperature resulted in the formation of dissociated adsorbed species at saturation coverages of nominally 0.2–0.25 monolayer on both surfaces. The combination of higher pressure (ca. 10?3 Pa) and higher surface temperature (570 K) dosing produced a three to five times higher saturation coverage than the low pressure dosing. The effect of dosing condition on the saturation coverage appears to reconcile apparent discrepancies for the Pt(100) surface in the literature. Characterization by XPS of the higher coverage state for oxygen showed that it is in the same chemical state as the oxygen adsorbed at very low coverage. Angle-resolved XPS has shown that in all cases the oxygen appears to reside on the surface with no significant penetration of oxygen into the bulk, as would be characteristic of oxidation. However, some penetration on the surface by oxygen, such as by a place-exchange type restructuring of the first two atomic layers, cannot be entirely ruled out.  相似文献   

8.
The adsorption of sulfur dioxide and the interaction of adsorbed oxygen and sulfur on Pt(111) have been studied using flash desorption mass spectrometry and LEED. The reactivity of adsorbed sulfur towards oxygen depends strongly on the sulfur surface concentration. At a sulfur concentration of 5 × 1014 S atoms cm?2 ((3 × 3)R30° structure) oxygen exposures of 5 × 10?5 Torr s do not result in the adsorption of oxygen nor in the formation of SO2. At concentrations lower than 3.8 × 1014 S stoms cm?2 ((2 × 2) structure) the thermal desorption following oxygen dosing at 320 K yields SO2 and O2. With decreasing sulfur concentration the amount of desorbing O2 increases and that of SO2 passes a maximum. This indicates that sulfur free surface regions, i.e. holes or defects in the (2 × 2) S structure, are required for the adsorption of oxygen and for the reaction of adsorbed sulfur with oxygen. SO2 is adsorbed with high sticking probability and can be desorbed nearly completely as SO2 with desorption maxima occurring at 400, 480 and 580 K. The adsorbed SO2 is highly sensitive to hydrogen. Small H2 doses remove most of the oxygen and leave adsorbed sulfur on the surface. After adsorption of SO2 on an oxygen predosed surface small amounts of SO3 were desorbed in addition to SO2 and O2 during heating. Preadsorbed oxygen produces variations of the SO2 peak intensities which indicate stabilization of an adsorbed species by coadsorbed oxygen.  相似文献   

9.
Temperature programmed desorption (TPD) of coadsorbed NO and CO on Pt(111) shows that no reaction occurs (less than 2%) up to the desorption temperature of NO. At 100 K, adsorption is competitive, but neither gas displaces the other from the surface. Coadsorbed CO causes the NO desorption temperature to be lowered by as much as 100 K, but NO does not affect the CO desorption temperature. TPD spectra for NO depend on which gas is adsorbed first, indicating that equilibrium between species is not established on the surface during desorption. Electron energy loss spectra show that the vibrational spectrum of each gas is only weakly affected by the other. When NO is adsorbed first, CO does not affect the ratio of bridged and terminal NO but lowers the frequencies of the bridged NO by approximately 50 cm?1 and lowers the intensities of vibrational peaks of both species by a factor of about four. When CO is adsorbed first, the ratio of terminal to bridged NO increases for given coverage of NO, and the frequency of the bridged NO remains at the pure NO value. These results are explained in terms of CO island formation, repulsive interactions between NO and CO, and low adsorbate mobilities.  相似文献   

10.
基于密度泛函理论和周期平板模型研究了NO在Pt(111)表面的吸附,通过扫描隧道显微镜(STM)的理论计算分析了吸附的结构特征.计算得到的Pt-NO伸缩振动(圪)频率基本保持不变,受阻平动(v3,v4)和受阻转动(us,v6)完全是简并的.采用CI-NEB方法讨论了NO在Pt(111)表面的离解过程,研究结果表明NO在Pt(111)表面的离解比较困难,必须克服2.29eV的能垒.  相似文献   

11.
The adsorption position of oxygen on the clean Pt(111) surface has been determined by means of the transmission channeling technique. Oxygen adsorbs in a well ordered p(2 × 2) overlayer structure at temperatures 200 T 350 K. From an analysis of the angular scans along the [111], [110] and [100] axial directions it is concluded that the O atoms are adsorbed in the fcc three-fold hollow site exclusively at a height of 0.85 ± 0.06 Å above the Pt surface layer. From a narrowing of the [111] angular O scan, the O RMS displacement parallel to the surface is found to be 0.16 ±0.03 Å.  相似文献   

12.
The kinetics of O2 adsorption on a clean Pt(111) surface were investigated in the temperature range 214–400°C. The oxygen coverage was measured by CO titration as well as Auger electron spectroscopy both of which show the same dependence on O2 exposure. The initial sticking coefficient on clean Pt(111) is 0.08–0.10 and decreases exponentially with increasing oxygen coverage. For θ > 0.23 a (2 × 2)-O LEED pattern was observed. The highest oxygen coverage obtained was approximately 0.45. A theoretical model was proposed which correlates the coverage dependence of the sticking coefficient with adsorbate interactions in the chemisorbed state. These interactions cause a coverage dependent activation energy of adsorption assuming the existence of a precursor state. Experiments dealing with the effect of carbon contamination on the sticking coefficient showed that the initial sticking coefficient decreases with increasing carbon coverage.  相似文献   

13.
14.
High resolution electron energy loss spectroscopy has been applied to study the adsorption of benzene (C6H6 and C6D6) on Pt(111) and Ni(111) single crystal surfaces between 140 and 320 K. The vibrational spectra provide evidence that benzene is chemisorbed with its ring parallel to the surface, predominantly π bonded to the platinum and nickel surface respectively. A significant frequency increase of the CH-out-of-plane bending mode, largest in the case of platinum, is observed compared to the free molecule. On both metals two phases of benzene exist simultaneously, characterized by a different frequency shift. The shifts are explained by electronic interaction between the metal d-orbitals and molecules adsorbed in on top and threefold hollow sites respectively. The vibrational spectra of the multilayer condensed phase of benzene exhibit the infrared active modes of the gasphase molecule as expected.  相似文献   

15.
氧原子在Pt表面的吸附和扩散是理解氧化和腐蚀等问题的基础.基于密度泛函理论和周期平板模型研究了氧原子在Pt(111)表面及次表层的吸附,通过扫描隧道显微镜(STM)的理论计算分析了吸附的结构特征.采用CI-NEB方法讨论了氧原子在Pt(111)表面和次表层的扩散过程.研究结果表明氧原子在Pt(111)表面的扩散比较容易,而氧原子向次表层的扩散相对较难,这主要是因为次表层的扩散需要经过一个Pt原子层,必须克服一定的能垒,从而说明过渡金属Pt具有很强的抗氧化性.  相似文献   

16.
17.
Mechanism of the associative desorption of oxygen from the Pt(111) surface has been studied on atomic level by means of DFT/GGA calculations and kinetic Monte Carlo simulations. It has been found that two oxygen adatoms can occur, with sufficient probability, in neighboring on-top sites, which is essential for formation and subsequent evaporation of the oxygen molecule. Monte Carlo simulations have demonstrated effectiveness of this channel for O2 formation on Pt(111) and strongly support the suggested model of associative desorption from transition metal surfaces.  相似文献   

18.
19.
We have observed, using infrared spectroscopy, that the precursor-mediated O2 chemisorption on the clean and the partially hydrogen-covered Pt(111) surfaces exhibits opposite temperature dependencies above the temperature for stable O2 physisorption. While the chemisorption probability on the clean surface increases with increasing temperature due to thermal activation of the precursor, it decreases on the partially hydrogen-covered surface which we suggest is due to a general loss of the mobile precursor molecules by thermal desorption from chemically inert hydrogen islands.  相似文献   

20.
Oxygen adsorbed on Pt(111) has been studied by means of temperature programmed thermal desorption spectroscopy (TPDS). high resolution electron energy loss spectroscopy (EELS) and LEED. At about 100 K oxygen is found to be adsorbed in a molecular form with the axis of the molecule parallel to the surface as a peroxo-like species, that is, the OO bond order is about 1. At saturation coverage (θmol= 0.44) a (32×32)R15° diffraction pattern is observed. The sticking probability S at 100 K as a function of coverage passes through a maximum at θ = 0.11 with S = 0.68. The shape of the coverage dependence is characteristic for adsorption in islands. Two coexisting types of adsorbed oxygen molecules with different OO stretching vibrations are distinguished. At higher coverages units with v-OO = 875 cm?1 are dominant. With decreasing oxygen coverages the concentration of a type with v-OO = 700 cm?1 is increased. The dissociation energy of the OO bond in the speices with v-OO = 875 cm?1 is estimated from the frequency shift of the first overtone to be ~ 0.5 eV. When the sample is annealed oxygen partially desorbs at ~ 160K, partially dissociates and orders into a p(2×2) overlayer. Below saturation coverage of molecular oxygen, dissociation takes place already at92 K. Atomically adsorbed oxygen occupies threefold hollow sites, with a fundamental stretching frequency of 480 cm?1. In the non-fundamental spectrum of atomic oxygen the overtone of the E-type vibration is observed, which is “dipole forbidden” as a fundamental in EELS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号