首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decomposition of 14C containing organic molecules into an inorganic compound has been investigated by γ-ray irradiation experiments under simulated repository conditions for radioactive waste. Lower molecular weight organic acids, alcohols, and aldehydes leached from metallic waste are reacted with OH radicals to give carbonic acid. A decomposition efficiency that expresses consumption of OH radicals by decomposition reaction of organic molecules is proposed. Decomposition efficiency increases with increasing concentration of organic molecules (1×10−6–1×10−3 mol dm−3) and is not dependent on dose rate (10–1000 Gy h−1). Observed dependence indicates that decomposition efficiency is determined by reaction probability of OH radicals with organic molecules.  相似文献   

2.
The kinetics of the dissipation of chlortetracycline in the aquatic environment was studied over a period of 90 days using microcosm experiments and distilled water controls. The distilled water control experiments, carried out under dark conditions as well as exposed to natural sunlight, exhibited biphasic linear rates of dissipation. The microcosm experiments exhibited triphasic linear rates of degradation both in the water phase (2.7 × 10−2, 7 × 10−3, 1.3 × 10−3 μg g−1 day–1) and the sediment phase (3.4 × 10−2, 6 × 10−3, 1 × 10−3 μg g−1 day–1). The initial slow rate of dissipation in the dark control (3 × 10−3 μg g−1 day–1) was attributed to a combination of evaporation and hydrolysis, whereas the subsequent fast rate (1.8 × 10−3 μg g−1 day1) was attributed to a combination of evaporation, hydrolysis, and microbial degradation. For the sunlight-exposed control, the initial slow rate of dissipation (1.5 × 10−3 μg g−1 day–1) was attributed to a combination of evaporation, hydrolysis, and photolysis, whereas the subsequent fast rate was attributed to a combination of evaporation, hydrolysis, photolysis, and microbial degradation (5.1 × 10−3 μg g−1 day–1). The initial fast rate of dissipation in the water phase of the microcosm experiment is attributed to a combination of evaporation, hydrolysis, photolysis, and microbial degradation, whereas all subsequent slow rates in the water phase and all rates of degradation in the sediment phase are attributed to microbial degradation of the colloidal and sediment particle adsorbed antibiotic. A multiphase zero-order kinetic model is presented that takes into account (a) dissipation of the antibiotic via evaporation, hydrolysis, photolysis, microbial degradation, and adsorption by colloidal and sediment particles and (b) the dependence of the dissipation rate on the concentration of the antibiotic, type and count of microorganisms, and type and concentration of colloidal particles and sediment particle adsorption sites within a given aquatic environment.  相似文献   

3.
A thermally stable carbocationic covalent organic network (CON), named RIO-70 was prepared from pararosaniline hydrochloride, an inexpensive dye, and triformylphloroglucinol in solvothermal conditions. This nanoporous organic material has shown a specific surface area of 990 m2 g−1 and pore size of 10.3 Å. The material has CO2 uptake of 2.14 mmol g−1 (0.5 bar), 2.7 mmol g−1 (1 bar), and 6.8 mmol g−1 (20 bar), the latter corresponding to 3 CO2 molecules adsorbed per pore per sheet. It is shown to be a semiconductor, with electrical conductivity (σ) of 3.17×10−7 S cm−1, which increases to 5.26×10−4 S cm−1 upon exposure to I2 vapor. DFT calculations using periodic conditions support the findings.  相似文献   

4.
Widespread use of pesticides has caused serious environmental concern. In order to evaluate the fate of organic pesticides in the atmosphere, rate constants for gas phase reactions of OH radicals with dichlorvos, carbaryl, chlordimeform, and 2,4‐D butyl ester were measured using the relative rate method at ambient temperature and 101 kPa total pressure. On‐line FTIR spectroscopy was used to monitor the concentrations of pesticides as a function of time. The reaction rate constants with OH radicals (in units of cm3 molecule−1 s−1) have been determined as (2.0 ± 0.4) × 10−11 for dichlorvos, (3.3 ± 0.5) × 10−11 for carbaryl, (3.0 ± 0.7) × 10−10 for chlordimeform, and (1.5 ± 0.2) × 10−11 for 2,4‐D butyl ester. These rate constants agree well with those estimated based on the structure–activity relationship. The group rate constant for NC group (k(NC)) was estimated as 2.7 × 10−10 cm3 molecule−1 s−1. Dimethyl phosphite has been tentatively identified as a product of the reaction of dichlorvos with OH radicals. Atmospheric lifetimes due to the reactions with OH radicals were also estimated (in units of h): 14 ± 3 for dichlorvos, 8 ± 1 for carbaryl, 1.0 ± 0.3 for chlordimeform, and 19 ± 3 for 2,4‐D butyl ester. These short atmospheric lifetimes indicate that the four organic pesticides degrade rapidly in the atmosphere, and they themselves are unlikely to cause persistent pollution. Further studies are needed to identify the potential hazard of their degradation products. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 755–762, 2005  相似文献   

5.
The reactions between OH radicals and hydrogen halides (HCl, HBr, HI) have been studied between 298 and 460 K by using a discharge flow-electron paramagnetic resonance technique. The rate constants were found to be kHCl(298 K) = (7.9 ± 1.3) × 10−13 cm3 molecule−1 s−1 with a weak positive temperature dependence, kHBr (298-460 K) = (1.04 ± 0.2) × 10−11 cm3 molecule−1 s−1, and kHI(298 K) = (3.0 ± 0.3) × 10−11 cm3 molecule−1 s−1, respectively. The homogeneous nature of these reactions has been experimentally tested.  相似文献   

6.
Sodium arsenate, the main component of arsenic-containing solid waste pollutants, causes serious environmental health threats. Crystallization is one of the effective methods for separating and purifying sodium arsenate from arsenic-alkali residue lixivium. However, the crystallization process is limited for its low observability and the lack of separation and purification data. In this work, a laser detection system with a magnetic field generator was designed, and the solubility, metastable zone width, interfacial tension, interfacial entropy factor, crystal nucleation, and growth rate of sodium arsenate were investigated in a constant composition environment. The results showed that the solubility, metastable zone width, interfacial tension, and interfacial entropy factor decreases with the presence of a magnetic field. The magnetic field shortened the crystallization induction time and changed the nucleation and growth rate of sodium arsenate. Under the magnetic field, the nucleation rate increased from 2.43 × 1016 to 8.98 × 1017 (s m3)−1, and the growth rate decreased from 4.94 × 10−8 to 2.73 × 10−8 (s m3)−1, the growth mechanism of sodium arsenate as a continuous growth mode was unchanged. In addition, the X-ray diffraction and infrared showed that the crystal structure of sodium arsenate is unaffected by the magnetic field, indicating that the enhancement of the crystallization process of sodium arsenate with the magnetic field could be a feasible method in engineering application.  相似文献   

7.
《Polyhedron》2003,22(14-17):1865-1870
The synthesis, X-ray structure, and magnetic properties of a trinuclear iron complex with the formulation [Fe3O2Cl2(4,7-Me-phen)6](BF4)3 (complex 1) are reported. DC magnetic susceptibility measurements show the Fe atoms are antiferromagnetically coupled, yielding an S=5/2 ground state. An investigation as to whether complex 1 exhibits the properties associated with single-molecule magnetism was undertaken. Detailed high frequency EPR experiments were carried out to determine the spin Hamiltonian parameters associated with the S=5/2 spin ground state. Analysis of the temperature dependence of the transitions seen with the magnetic field oriented along the easy axis (z axis) of the Fe3 complex confirm that the molecule has a positive D value. A fit of the frequency dependence of the resonances afforded the following spin Hamiltonian parameters: S=5/2, gz=1.95, gx=gy=2.00, D=0.844 cm−1, E=±0.117 cm−1, and B4 0=−2.7×10−4 cm−1. Low temperature magnetization versus magnetic field data confirm that complex 1 has no barrier towards magnetization reversal. Thus, it is concluded that, due to the positive D-value, complex 1 is not a single-molecule magnet.  相似文献   

8.
The radiation induced degradation of 4-nitrophenol (4-NP) has been studied by gamma irradiation, while the reactivity and spectral features of the short lived transients formed by reaction with primary transient radicals at different pHs has been investigated by pulse radiolysis technique. In steady state radiolysis a dose of 4.4 k Gy is able to degrade 98% of 1×10−4 mol dm−3 4-NP. 4-NP has pKa at 7.1, above which it is present in the anionic form. At pH 5.2, OH and N3 radicals were found to react with 4-NP with rate constants of 4.1×109 dm3 mol−1 s−1 and 2.8×108 dm3 mol−1 s−1, respectively. Differences in the absorption spectra of species formed in the reactions of 4-NP with OH and N3 radicals suggested that OH radicals add to the aromatic ring of 4-NP along with electron transfer reaction, whereas N3 radicals undergo only electron transfer reaction. At pH 9.2, rate constants for the reaction of OH radicals with 4-NP was found to be higher by a factor of 2 compared to that at pH 5.2. This has been assigned to the deprotonation of 4-NP at pH 9.2.  相似文献   

9.
The rate coefficients of the reactions of OH radicals and Cl atoms with three alkylcyclohexanes compounds, methylcyclohexane (MCH), trans‐1,4‐dimethylcyclohexane (DCH), and ethylcyclohexane (ECH) have been investigated at (293 ± 1) K and 1000 mbar of air using relative rate methods. A majority of the experiments were performed in the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC), a stainless steel chamber using in situ FTIR analysis and online gas chromatography with flame ionization detection (GC‐FID) detection to monitor the decay of the alkylcyclohexanes and the reference compounds. The studies were undertaken to provide kinetic data for calibrations of radical detection techniques in HIRAC. The following rate coefficients (in cm3 molecule−1 s−1) were obtained for Cl reactions: k(Cl+MCH) = (3.51 ± 0.37) × 10–10, k(Cl+DCH) = (3.63 ± 0.38) × 10−10, k(Cl+ECH) = (3.88 ± 0.41) × 10−10, and for the reactions with OH radicals: k(OH+MCH) = (9.5 ± 1.3) × 10–12, k(OH+DCH) = (12.1 ± 2.2) × 10−12, k(OH+ECH) = (11.8 ± 2.0) × 10−12. Errors are a combination of statistical errors in the relative rate ratio (2σ) and the error in the reference rate coefficient. Checks for possible systematic errors were made by the use of two reference compounds, two different measurement techniques, and also three different sources of OH were employed in this study: photolysis of CH3ONO with black lamps, photolysis of H2O2 at 254 nm, and nonphotolytic trans‐2‐butene ozonolysis. For DCH, some direct laser flash photolysis studies were also undertaken, producing results in good agreement with the relative rate measurements. Additionally, temperature‐dependent rate coefficient investigations were performed for the reaction of methylcyclohexane with the OH radical over the range 273‐343 K using the relative rate method; the resulting recommended Arrhenius expression is k(OH + MCH) = (1.85 ± 0.27) × 10–11 exp((–1.62 ± 0.16) kJ mol−1/RT) cm3 molecule−1 s−1. The kinetic data are discussed in terms of OH and Cl reactivity trends, and comparisons are made with the existing literature values and with rate coefficients from structure‐activity relationship methods. This is the first study on the rate coefficient determination of the reaction of ECH with OH radicals and chlorine atoms, respectively.  相似文献   

10.
Fourier transform infrared (FTIR) smog chamber techniques were used to investigate the atmospheric chemistry of the isotopologues of methane. Relative rate measurements were performed to determine the kinetics of the reaction of the isotopologues of methane with OH radicals in cm3 molecule−1 s−1 units: k(CH3D + OH) = (5.19 ± 0.90) × 10−15, k(CH2D2 + OH) = (4.11 ± 0.74) × 10−15, k(CHD3 + OH) = (2.14 ± 0.43) × 10−15, and k(CD4 + OH) = (1.17 ± 0.19) × 10−15 in 700 Torr of air diluent at 296 ± 2 K. Using the determined OH rate coefficients, the atmospheric lifetimes for CH4–xDx (x = 1–4) were estimated to be 6.1, 7.7, 14.8, and 27.0 years, respectively. The results are discussed in relation to previous measurements of these rate coefficients.  相似文献   

11.
The kinetics of the gas-phase reactions of OH radicals, NO3 radicals, and O3 with indan, indene, fluorene, and 9,10-dihydroanthracene have been studied at 297 ± 2 K and atmospheric pressure of air. The rate constants, or upper limits thereof, for the O3 reactions were (in cm3 molecule−1 s−1 units): indan, < 3 × 10−19; indene, (1.7 ± 0.5) × 10−16, fluorene, < 2 × 10−19; and 9,10-dihydroanthracene, (9.0 ± 2.0) × 10−19. Using a relative rate method, the rate constants for the OH radical and NO3 radical reactions, respectively, were (in cm3 molecule−1 s−1 units): indan, (1.9 ± 0.5) × 10−11 and (6.6 ± 2.0) × 10−15; indene, (7.8 ± 2.0) × 10−11 and (4.1 ± 1.5) × 10−12; fluorene, (1.6 ± 0.5) × 10−11 and (3.5 ± 1.2) × 10−14; and 9,10-dihydroanthracene, (2.3 ± 0.6) × 10−11 and (1.2 ± 0.4) × 10−12. These kinetic data were used to assess the relative contributions of the various reaction pathways. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 299–309, 1997.  相似文献   

12.
The rate constants for the reduction of the divalent mercury ion Hg2+ by alcohol radicals, which are produced in acidic aqueous solutions containing methanol, ethanol or 2-propanol, are determined by optical absorption measurements to be 7.0×108, 3.8×108 or 3.1×108 dm3 mol−1 s−1, respectively.  相似文献   

13.
Peroxynitrite (ONOO, oxoperoxonitrate(1−)) reacts with carbon dioxide to form an adduct that absorbs with a maximum at 640 nm and an extinction coefficient of ca. 2 × 102 M −1 cm−1. Within 0.1 s at 4°, this absorption decreases while the maximum is shifted to lower wavelengths, which indicates that trioxocarbonate(1−) radicals (CO3.) are formed. This interpretation is supported by the observation of a weak ESR signal at g=2.013.  相似文献   

14.
A series of trialkyl and triaryl organometallic radicals from group IV generated by hydrogen abstraction by tert‐butoxyl radical from the parent hydrides have been examined using laser flash photolysis. The rate constants for the trapping of the metal‐centered radicals by the persistent radical TEMPO were measured and were found to be large and similar to those of the carbon‐centered radical systems, yet below the diffusion controlled limit. The metal‐centered radicals were found to be efficiently trapped by TEMPO and would appear to be candidates suitable for “living” free radical polymerization similar to carbon analogue stoichiometric initiators. The radical trapping rate constants for the trialkyl series (M = Si, Ge, Sn) were found to be 8.9 × 108 M−1 s−1 (M = Si), 7.2 × 108 M−1 s−1 (M = Ge), and 6.2 × 108 M−1 s−1 (M = Sn), respectively. The triaryl (Ph3M•) series gave slightly slower rates of 1.6 × 108 M−1 s−1 (M = Si), 3.4 × 108 M−1 s−1 (M = Ge), and 1.9 × 107 M−1 s−1 (M = Sn), respectively. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 238–244, 2000  相似文献   

15.
This study reports a comparison of adsorptive transfer and solution phase voltammetric methods for the study of caffeic acid. For this purpose, a platform was prepared by the modification of glassy carbon electrodes (GCEs) with MWCNTs and samarium nanoparticles (SmNPs) by means of an ultrasonic bath. The surface morphology of the platform was characterized using SEM, EDX and XRD. The adsorptive transfer voltammetric method was based on the adsorption of caffeic acid (CFA) at the surface of the modified electrode by keeping it into a solution of CFA. Afterwards, the modified electrode was transferred with the adsorbed species in a cell containing only 0.1 mol L−1 phosphate buffer solution (PBS) for the analysis. The current response of CFA was found to be linear over a concentration from 5.0 × 10−10 mol L−1 to 1.0 × 10−7 mol L−1. The values of the limit of detection (LOD) and limit of quantification (LOQ) were 2.0 × 10−10 mol L−1 and 6.67 × 10−10 mol L−1, respectively. The adsorptive transfer method using the modified electrode (SmNPs/MWCNTs/GCE) has successfully been applied to food samples for determining CFA. The solution phase voltammetry was carried out by dipping the electrode into a voltammetric cell containing CFA. The plot of peak currents was linear over the concentration range of 5.0 × 10−9 mol L−1 –8.0 × 10−8 mol L−1. The values of LOD and LOQ were 2.0 × 10−9 mol L−1 and 6.67 × 10−9 mol L−1 for CFA using a classical solution phase voltammetry at the proposed platform. It was shown that the LOD obtained at adsorptive transfer voltammetry was 10-fold lower when compared to classical solution phase voltammetry.  相似文献   

16.
Silver oxalate Ag2C2O4, was already proposed for soldering applications, due to the formation when it is decomposed by a heat treatment, of highly sinterable silver nanoparticles. When slowly decomposed at low temperature (125 °C), the oxalate leads however to silver nanoparticles isolated from each other. As soon as these nanoparticles are formed, the magnetic susceptibility at room temperature increases from −3.14 10−7 emu.Oe−1.g−1 (silver oxalate) up to −1.92 10−7 emu.Oe−1.g−1 (metallic silver). At the end of the oxalate decomposition, the conventional diamagnetic behaviour of bulk silver, is observed from room temperature to 80 K. A diamagnetic-paramagnetic transition is however revealed below 80 K leading at 2 K, to silver nanoparticles with a positive magnetic susceptibility. This original behaviour, compared to the one of bulk silver, can be ascribed to the nanometric size of the metallic particles.  相似文献   

17.
The mechanical properties of composite modified double base (CMDB) propellant significantly depend on the strain rate. In particular, the yield stress increases dramatically at higher strain rates. To study this behaviour, low, intermediate and high strain rate compression testing (1.7 × 10−4 to 4 × 103 s−1) of CMDB propellant at room temperature was conducted by using a universal testing machine, a hydraulic testing machine and a split Hopkinson pressure bar (SHPB) system, respectively. The yield stress was observed to increase bilinearly with the logarithm of strain rate, with a sharp increase in slope at a strain rate of 5 × 101 s−1, which was supported by dynamic mechanical analysis (DMA) testing. The Ree-Eyring model, involving two rate-activated processes, was employed to predict the yield behaviour of CMDB propellant over a wide range of strain rates. The predictions are in excellent agreement with the experimental data.  相似文献   

18.
Chiral materials with circularly polarized luminescence (CPL) are potentially applicable for 3D displays. In this study, by decorating the pyridinyl-helicene ligands with -CF3 and -F groups, the platinahelicene enantiomers featured superior configurational stability, as well as high sublimation yield (>90 %) and clear CPPL properties, with dissymmetry factors (|gPL|) of approximately 3.7×10−3 in solution and about 4.1×10−3 in doped film. The evaporated circularly polarized phosphorescent organic light-emitting diodes (CP-PhOLEDs) with two enantiomers as emitters exhibited symmetric CPEL signals with |gEL| of (1.1–1.6)×10−3 and decent device performances, achieving a maximum brightness of 11 590 cd m−2, a maximum external quantum efficiency up to 18.81 %, which are the highest values among the reported devices based on chiral phosphorescent PtII complexes. To suppress the effect of reverse CPEL signal from the cathode reflection, the further implementation of semitransparent aluminum/silver cathode successfully boosts up the |gEL| by over three times to 5.1×10−3.  相似文献   

19.
The rate coefficients for the gas-phase reactions of C2H5O2 and n-C3H7O2 radicals with NO have been measured over the temperature range of (201–403) K using chemical ionization mass spectrometric detection of the peroxy radical. The alkyl peroxy radicals were generated by reacting alkyl radicals with O2, where the alkyl radicals were produced through the pyrolysis of a larger alkyl nitrite. In some cases C2H5 radicals were generated through the dissociation of iodoethane in a low-power radio frequency discharge. The discharge source was also tested for the i-C3H7O2 + NO reaction, yielding k298 K = (9.1 ± 1.5) × 10−12 cm3 molecule−1 s−1, in excellent agreement with our previous determination. The temperature dependent rate coefficients were found to be k(T) = (2.6 ± 0.4) × 10−12 exp{(380 ± 70)/T} cm3 molecule−1 s−1 and k(T) = (2.9 ± 0.5) × 10−12 exp{(350 ± 60)/T} cm3 molecule−1 s−1 for the reactions of C2H5O2 and n-C3H7O2 radicals with NO, respectively. The rate coefficients at 298 K derived from these Arrhenius expressions are k = (9.3 ± 1.6) × 10−12 cm3 molecule−1 s−1 for C2H5O2 radicals and k = (9.4 ± 1.6) × 10−12 cm3 molecule−1 s−1 for n-C3H7O2 radicals. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
This study aimed to explore the possible mechanism of Achyranthis Bidentatae Radix for the treatment of osteoporosis using tandem mass tag-based proteomics technique combined with mass spectrometry. Proteomics techniques combined with bioinformatics were used to analyze the biological functions of differentially expressed proteins. In addition, western blotting was performed to verify the expression of related proteins. A total of 3,752 proteins were identifiable by proteomic analysis. Furthermore, 93 differentially expressed proteins were identified, of which 61 were upregulated and 32 were downregulated. Differentially expressed proteins were primarily associated with oxidative phosphorylation (p = 4.8 × 10−4) pathways and involved in transmembrane transport (p = 3.5 × 10−3), exocytic process (p = 1.2 × 10−2), cellular developmental process (p = 1.3 × 10−2), adenosine triphosphate metabolic process (p = 1.0 × 10−2) and other biological processes. Western blotting analysis showed that MT-CYB and NDUFA9 were differentially expressed in the bone microenvironment of rats with osteoporosis. We speculated that they were potential biomarkers linked to osteoporosis. This study employed proteomics to explore the potential therapeutic targets of Achyranthis Bidentatae Radix to treat osteoporosis. This revealed that mitochondria are a new target for the treatment of glucocorticoid-induced osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号