首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene is a material of unmatched properties and eminent potential in disciplines ranging from physics, to chemistry, to biology. Its advancement to applications with a specific function requires rational design and fine tuning of its properties, and covalent introduction of various substituents answers this requirement. We challenged the obstacle of non‐trivial and harsh procedures for covalent functionalization of pristine graphene and developed a protocol for mild nucleophilic introduction of organic groups in the gas phase. The painstaking analysis problem of monolayered materials was addressed by using surface‐enhanced Raman spectroscopy, which allowed us to monitor and characterize in detail the surface composition. These deliverables provide a toolbox for reactivity of fluorinated graphene under mild reaction conditions, providing structural freedom of the species to‐be‐grafted to the single‐layer graphene.  相似文献   

2.
We report an approach for the synthesis of mono‐ or bilayer graphene films by atmospheric‐pressure chemical vapor deposition that can achieve a low defect density through control over the growth time. Different heating ramp rates were found to lead to variation in the smoothness and grain size of the Cu foil substrate, which directly influenced the density of the graphene domains. The rough Cu surface induced by rapid heating creates a high density of graphene domains in the initial stage, ultimately resulting in a graphene film with a high defect density due to an increased overlap between domains. Conversely, a slow heating rate resulted in a smooth and flat Cu surface, thereby lowering the density of the initial graphene domains and ensuring a uniform monolayer film. From this, we demonstrate that the growth mechanism of graphene on existing graphene films is dependent on the density of the initial graphene domains, which is affected by the heating ramp rate.  相似文献   

3.
High electrochemical reactivity is required for various energy and sensing applications of graphene grown by chemical vapor deposition (CVD). Herein, we report that heterogeneous electron transfer can be remarkably fast at CVD‐grown graphene electrodes that are fabricated without using the conventional poly(methyl methacrylate) (PMMA) for graphene transfer from a growth substrate. We use nanogap voltammetry based on scanning electrochemical microscopy to obtain very high standard rate constants k0≥25 cm s?1 for ferrocenemethanol oxidation at polystyrene‐supported graphene. The rate constants are at least 2–3 orders of magnitude higher than those at PMMA‐transferred graphene, which demonstrates an anomalously weak dependence of electron‐transfer rates on the potential. Slow kinetics at PMMA‐transferred graphene is attributed to the presence of residual PMMA. This unprecedentedly high reactivity of PMMA‐free CVD‐grown graphene electrodes is fundamentally and practically important.  相似文献   

4.
The problem of graphene protection of Ge surfaces against oxidation is investigated. Raman, X-Ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements of graphene epitaxially grown on Ge(001)/Si(001) substrates are presented. It is shown that the penetration of water vapor through graphene defects on Gr/Ge(001)/Si(001) samples leads to the oxidation of germanium, forming GeO2. The presence of trigonal GeO2 under graphene was identified by Raman and XRD measurements. The oxidation of Ge leads to the formation of blisters under the graphene layer. It is suggested that oxidation of Ge is connected with the dissociation of water molecules and penetration of OH molecules or O to the Ge surface. It has also been found that the formation of blisters of GeO2 leads to a dramatic increase in the intensity of the graphene Raman spectrum. The increase in the Raman signal intensity is most likely due to the screening of graphene by GeO2 from the Ge(001) surface.  相似文献   

5.
Chemical vapor deposition (CVD) has become a promising approach for the industrial production of graphene films with appealing controllability and uniformity. However, in the conventional hot-wall CVD system, CVD-derived graphene films suffer from surface contamination originating from the gas-phase reaction during the high-temperature growth. Shown here is that the cold-wall CVD system is capable of suppressing the gas-phase reaction, and achieves the superclean growth of graphene films in a controllable manner. The as-received superclean graphene film, exhibiting improved optical and electrical properties, was proven to be an ideal candidate material used as transparent electrodes and substrate for epitaxial growth. This study provides a new promising choice for industrial production of high-quality graphene films, and the finding about the engineering of the gas-phase reaction, which is usually overlooked, will be instructive for future research on CVD growth of graphene.  相似文献   

6.
化学气相沉积(CVD)法是制备大面积、高质量石墨烯材料的主要方法之一,但存在衬底转移和碳固溶等问题,本文选用蓝宝石衬底弥补了传统CVD法的不足。利用CVD法在蓝宝石衬底上生长石墨烯材料,研究生长温度对石墨烯表面形貌和晶体质量的影响。原子力显微镜(AFM)、光学显微镜(OM)、拉曼光谱和霍尔测试表明,低温生长有利于保持材料表面的平整度,高温生长有利于提高材料的晶体质量。研究氢气和碳源对蓝宝石衬底表面刻蚀作用机理,发现氢气对蓝宝石衬底有刻蚀作用,而单纯的碳源不能对衬底产生刻蚀效果。在1200 ℃下,直径为50 mm的晶圆级衬底上获得平整度和质量相对较好的石墨烯材料,室温下载流子迁移超过1000 cm2·V-1·s-1。  相似文献   

7.
Graphene films were grown by chemical vapor deposition on Cu foil. The obtained samples were characterized by Raman spectroscopy, ellipsometry, X-ray photoelectron spectroscopy and electron back-scatter diffraction. We discuss the time-dependent changes in the samples, estimate the thickness of emerging Cu2O beneath the graphene and check the orientation-dependent affinity to oxidation of distinct Cu grains, which also governs the manner in which the initial strong Cu-graphene coupling and strain in the graphene lattice is released. Effects of electropolishing on the quality and the Raman response of the grown graphene layers are studied by microtexture polarization analysis. The obtained data are compared with the Raman signal of graphene after transfer on glass substrate revealing the complex interaction of graphene with the Cu substrate.  相似文献   

8.
Fluorination modifies the electronic properties of graphene, and thus it can be used to provide material with on‐demand properties. However, the thermal stability of fluorinated graphene is crucial for any application in electronic devices. Herein, X‐ray photoelectron spectroscopy (XPS), temperature‐programmed desorption (TPD), and Raman spectroscopy were used to address the impact of the thermal treatment on fluorinated graphene. The annealing, at up to 700 K, caused gradual loss of fluorine and carbon, as was demonstrated by XPS. This loss was associated with broad desorption of CO and HF species, as monitored by TPD. The minor single desorption peak of CF species at 670 K is suggested to rationalize defect formation in the fluorinated graphene layer during the heating. However, fluorine removal from graphene was not complete, as some fraction of strongly bonded fluorine can persist despite heating to 1000 K. The role of intercalated H2O and OH species in the defluorination process is emphasised.  相似文献   

9.
Barium strontium titanate (Ba0.65Sr0.35TiO3) ferroelectric thin films have been prepared by sol-gel method on Pt/Ti/SiO2/Si substrate. The X-ray diffraction (XRD) pattern indicated that the films were a polycrystalline perovskite structure and the atomic force microscope (AFM) image showed that the crystallite size and the root mean square roughness (RMS) were 90 nm and 3.6 nm, respectively. The X-ray photoelectron spectrum (XPS) images showed that Pt consisting in BST thin films was the metallic state, and the Auger electron spectroscopy (AES) analysed the Pt concentration in different depth profiles of BST thin films. The result displayed that the Pt diffusion in BST thin film is divided into two regions: near the BST/Pt interface, the diffusion type was volume diffusion, and far from the interface correspondingly, the diffusion type became grain boundary diffusion. In this paper, the previous researcher’s result was used to verify our conclusion.  相似文献   

10.
Patterned graphene‐functionalization with a tunable degree of functionalization can tailor the properties of graphene. Here, we present a new reductive functionalization approach combined with lithography rendering patterned graphene‐functionalization easily accessible. Two types of covalent patterning of graphene were prepared and their structures were unambiguously characterized by statistical Raman spectroscopy together with scanning electron microscopy/energy‐dispersive X‐ray spectroscopy (SEM‐EDS). The reversible defunctionalization processes, as revealed by temperature‐dependent Raman spectroscopy, enable the possibility to accurately modulate the degree of functionalization by annealing. This allows for the management of chemical information through complete write/store/erase cycles. Based on our strategy, controllable and efficient patterning graphene‐functionalization is no longer a challenge and facilitates the development of graphene‐based devices.  相似文献   

11.
Chemical vapor deposition (CVD) has become a promising approach for the industrial production of graphene films with appealing controllability and uniformity. However, in the conventional hot‐wall CVD system, CVD‐derived graphene films suffer from surface contamination originating from the gas‐phase reaction during the high‐temperature growth. Shown here is that the cold‐wall CVD system is capable of suppressing the gas‐phase reaction, and achieves the superclean growth of graphene films in a controllable manner. The as‐received superclean graphene film, exhibiting improved optical and electrical properties, was proven to be an ideal candidate material used as transparent electrodes and substrate for epitaxial growth. This study provides a new promising choice for industrial production of high‐quality graphene films, and the finding about the engineering of the gas‐phase reaction, which is usually overlooked, will be instructive for future research on CVD growth of graphene.  相似文献   

12.
The growth of carbon layers, defective graphene, and graphene by deposition of polycyclic aromatic hydrocarbons (PAHs) on Cu(111) is studied by scanning tunneling microscopy and X-ray photoelectron spectroscopy. Two different PAHs are used as starting materials: the buckybowl pentaindenocorannulene (PIC) which contains pentagonal rings and planar coronene (CR). For both precursors, with increasing sample temperature during deposition, porous carbon aggregates (350 °C), dense carbon layers (400–450 °C), disordered defective graphene (500 °C–550 °C), and extended graphene (≥600 °C) are obtained. No significant differences for defective graphene grown from PIC and CR are observed. C 1s X-ray photoelectron spectra of PIC and CR derived samples grown at 350–550 °C exhibit a characteristic C−Cu low binding energy component. Preparation at ≥600 °C eliminates this C−Cu species and only C−C bonded carbon remains.  相似文献   

13.
In this review, we highlight recent advancements in 3D graphene foam synthesis by template-assisted chemical vapor deposition, as well as their potential energy storage and conversion applications. This method offers good control of the number of graphene layers and porosity, as well as continuous connection of the graphene sheets. The review covers all the substrate types, catalysts, and precursors used to synthesize 3D graphene by the CVD method, as well as their most viable energy-related applications.  相似文献   

14.
15.
以二甲基二硫化物(DMDS)和正硅酸乙酯(TEOS)为反应物在25Cr35Ni合金基体上化学气相沉积SiO2/S复合涂层。应用热力学势函数法对SiO2与S的生成反应以及反应产物之间的化学反应进行了热力学计算和分析,并对化学气相沉积源物质的配比选择进行了讨论。结果表明:常压下选取预热温度773K、沉积温度1023K以及适当配比的源物质化学气相沉积SiO2/S复合涂层是可行的。  相似文献   

16.
A novel way to grow MoS2 on a large scale with uniformity and in desired patterns is developed. We use Au film as a catalyst on which [Mo(CO)6] vapor decomposes to form a Mo‐Au surface alloy that is an ideal Mo reservoir for the growth of atomic layers of MoS2. Upon exposure to H2S, this surface alloy transforms into a few layers of MoS2, which can be isolated and transferred on an arbitrary substrate. By simply patterning Au catalyst film by conventional lithographic techniques, MoS2 atomic layers in desired patterns can be fabricated.  相似文献   

17.
Precursors and catalysts play vital roles in chemical reactions. Considerable efforts have been devoted to the investigation of catalysts for graphene growth by chemical vapor deposition in recent years. However, there has been little research on precursors because of a lack of innovation in term of creating a controllable feeding method. Herein, we present a novel sustained and controlled release approach, and develop a convenient, safe, and potentially scalable feeding system with the assistance of matrix materials and a simple portable feeder. As a result, a highly volatile liquid precursor can be fed accurately to grow large-area, uniform graphene films with optimal properties. This feeding approach will further benefit the synthesis of other two-dimensional materials from various precursors.  相似文献   

18.
The aerosol-gel process is a thin film deposition technique based on the sol-gel polymerization of a liquid film deposited from an ultrasonically sprayed aerosol. SiO2 layers have been deposited by aerosol-gel process from TEOS solutions prepared using a two-step procedure. After a post-treatment at 80°C, the layers have a remarkable abrasion resistance and a high refractive index. In this paper, the chemical mechanisms involved in the formation of SiO2 layers at low temperature are studied by FTIR spectroscopy and related to the processing conditions.  相似文献   

19.
Russian Journal of Physical Chemistry A - The maximum size of homogeneous monolayer graphene flakes that form during the high-temperature evaporation of silicon from a surface of SiC or during...  相似文献   

20.
Carbon materials with various structures were produced via plasma-enhanced chemical vapor deposition by controlling substrate temperature and mixed gases in the atmosphere. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), high resolution transmission electron microscopy(HRTEM) and Raman spectroscopy were employed to investigate the morphology and structure of the materials. The results show that at a low substrate temperature(100 ℃) in CH4:Ar(flow rate ratio was 100 cm3/min:10 cm3/min), amorphous carbon formed on Si(100) that could act as a support for the growth of carbon nanobelt and layer graphene at 800 ℃. Vertically oriented multi-layer graphene nanosheets(GNs) were catalyst-free synthesized on Si and Ni foam at 800 ℃ in a mixture of CH4:Ar(20 cm3/min:60, 80 and 100 cm3/min). The capacitor character investigated by cyclic voltammetry and galvanostatic charge/discharge indicates that for the as-synthesized GNs, the electrochemical capacitance is very small(16 F/g at current density of 16 A/g). However, having been treated in acidic solution, the GNs exhibited good capacitive behavior, with a capacitance of 166 F/g, and after 800 charge/discharge cycles at 32 A/g, the capacitance could retain about 88.4%. The enhancement of specific capacitance is attributed to the increase of specific surface area after etching treatment of them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号