首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学快报》2023,34(6):107681
Single atom catalysts (SACs) with atomically dispersed transition metals on nitrogen-doped carbon supports have recently emerged as highly active non-noble metal electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), showing great application potential in Zn-air batteries. However, because of the complex structure-performance relationships of carbon-based SACs in the oxygen electrocatalytic reactions, the contribution of different metal atoms to the catalytic activity of SACs in Zn-air batteries still remains ambiguous. In this study, SACs with atomically dispersed transition metals on nitrogen-doped graphene sheets (M-N@Gs, M = Co, Fe and Ni), featured with similar physicochemical properties and M-N@C configurations, are obtained. By comparing the on-set potentials and the maximum current, we observed that the ORR activity is in the order of Co-N@G > Fe-N@G > Ni-N@G, while the OER activity is in the order of Co-N@G > Ni-N@G > Fe-N@G. The Zn-air batteries with Co-N@G as the air cathode catalysts outperform those with the Fe-N@G and Ni-N@G. This is due to the accelerated charge transfer between Co-N@C active sites and the oxygen-containing reactants. This study could improve our understanding of the design of more efficient bifunctional electrocatalysts for Zn-air batteries at the atomic level.  相似文献   

2.
The solvent‐free selective oxidation of alcohols to aldehydes with molecular oxygen is highly attractive yet challenging. Interfacial sites between a metal and an oxide support are crucial in determining the activity and selectivity of such heterogeneous catalysts. Herein, we demonstrate that the use of supported single‐atom catalysts (SACs) leads to high activity and selectivity in this reaction. The significantly increased number of interfacial sites, resulting from the presence of individually dispersed metal atoms on the support, renders SACs one or two orders of magnitude more active than the corresponding nanoparticle (NP) catalysts. Lattice oxygen atoms activated at interfacial sites were found to be more selective than O2 activated on metal NPs in oxidizing the alcohol substrate. This work demonstrates for the first time that the number of interfacial sites is maximized in SACs, providing a new avenue for improving catalytic performance by developing appropriate SACs for alcohol oxidation and other reactions occurring at metal–support interfacial sites.  相似文献   

3.
The solvent‐free selective oxidation of alcohols to aldehydes with molecular oxygen is highly attractive yet challenging. Interfacial sites between a metal and an oxide support are crucial in determining the activity and selectivity of such heterogeneous catalysts. Herein, we demonstrate that the use of supported single‐atom catalysts (SACs) leads to high activity and selectivity in this reaction. The significantly increased number of interfacial sites, resulting from the presence of individually dispersed metal atoms on the support, renders SACs one or two orders of magnitude more active than the corresponding nanoparticle (NP) catalysts. Lattice oxygen atoms activated at interfacial sites were found to be more selective than O2 activated on metal NPs in oxidizing the alcohol substrate. This work demonstrates for the first time that the number of interfacial sites is maximized in SACs, providing a new avenue for improving catalytic performance by developing appropriate SACs for alcohol oxidation and other reactions occurring at metal–support interfacial sites.  相似文献   

4.
Single-atom catalysts (SACs) have been widely applied as electrocatalysts due to their excellent catalytic ability, selectivity, and stability, which are also key aspects considered for electro-sensing interfaces. Typical SACs are catalytic single atoms dispersed over oxide-, sulfide-, or carbon-based material supports. In this review, the electrocatalytic mechanisms of SACs are briefly summarized. SACs can increase the reactivity and modulate the reaction pathway via redox mediating, adsorbing to the preferred reactant/intermediate, and cooperating with other active sites either from the substrate or from a nearby heteroatom. Based on the mechanistic insights of SACs, this review aims to provide some inspirations for future applications of SACs in the design of efficient electro-sensing interfaces.  相似文献   

5.
邱卓  姚立华  杨智 《分子催化》2023,37(6):569-586
利用电催化技术开发新型能源,是替代传统能源的一种新策略,大量使用化石燃料导致的环境问题有望会通过此技术的发展而得到良好解决,设计并制备出高效稳定的电催化剂对于新型能源技术开发应用至关重要.单原子催化剂(SACs)在载体上具有原子分布的活性位点,是催化领域的新兴材料,具有美好的应用前景,现已成为电催化领域的研究热点.在此综述中,详细阐述了单原子电催化剂的一般载体、制备方法及其先进表征方法,系统总结了单原子电催化剂在能量转化和环境保护(CO2还原、水裂解)方面的应用.同时,基于各种单原子催化剂研究的最新进展,简单阐述了催化机制,讨论了单原子催化剂在电催化方向的发展挑战和前景,希望为单原子电催化剂的合成、设计和应用提供经验,以更好地促进电催化能量转换方面的发展.  相似文献   

6.
Single-atom site catalysts (SACs) provide an ideal platform to identify the active centers, explore the catalytic mechanism, and establish the structure-property relationships, and thus have attracted increasing interests for electrocatalytic energy conversion. Substantial endeavors have been devoted to the construction of carbon-supported SACs, and their progress have been comprehensively reviewed. Compared with carbon-supported SACs, transition metal compounds (TMCs)-supported SACs are still in their infancy in the field of electrocatalysis. However, they have also aroused ever-increasing attention for driving electrocatalytic water splitting, and emerged as an indispensable class of SACs in recent years, predominately owing to their inherently structural features, such as rich anchoring sites, surface defects, and lattice vacancy. Herein, in this review, we have systematically summarized the recent advances of a variety of TMC supported SACs toward electrocatalytic water splitting. The advanced characterization techniques and theoretical analyses for identifying and monitoring the atomic structure of SACs are firstly manifested. Subsequently, the anchoring and stabilization mechanisms for TMC supported SACs are also highlighted. Thereafter, the advances of TMC supported SACs for driving water electrolysis are systematically unraveled.  相似文献   

7.
Electrocatalytic water splitting has been considered as a promising strategy for the sustainable evolution of hydrogen energy and storage of intermittent electric energy. Efficient catalysts for electrocatalytic water splitting are urgently demanded to decrease the overpotentials and promote the sluggish reaction kinetics. Carbon-based composites, including heteroatom-doped carbon materials, metals/alloys@carbon composites, metal compounds@carbon composites, and atomically dispersed metal sites@carbon composites have been widely used as the catalysts due to their fascinating properties. However, these electrocatalysts are almost powdery form, and should be cast on the current collector by using the polymeric binder, which would result in the unsatisfied electrocatalytic performance. In comparison, a self-supported electrode architecture is highly attractive. Recently, self-supported metal–organic frameworks (MOFs) constructed by coordination of metal centers and organic ligands have been considered as suitable templates/precursors to construct free-standing carbon-based composites grown on conductive substrate. MOFs-derived carbon-based composites have various merits, such as the well-aligned array architecture and evenly distributed active sites, and easy functionalization with other species, which make them suitable alternatives to non-noble metal-included electrocatalysts. In this review, we intend to show the research progresses by employment of MOFs as precursors to prepare self-supported carbon-based composites. Focusing on these MOFs-derived carbon-based nanomaterials, the latest advances in their controllable synthesis, composition regulation, electrocatalytic performances in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting (OWS) are presented. Finally, the challenges and perspectives are showed for the further developments of MOFs-derived self-supported carbon-based nanomaterials in electrocatalytic reactions.  相似文献   

8.
Single atom catalysts (SACs) have attracted much attention in recent years. As an essential group in SACs, M−X−C (X=nonmetallic element) materials have been demonstrated to be efficient in many reactions. However, identifying the active sites on M−X−C, especially under working conditions, is still challenging, which is crucial for chemists to further understand the mechanism underlying the reaction and better design proper SACs for specific reactions. Herein, the types and characterization of M−X−C are comprehensively summarized and discussed in this review. In addition to the basic information above, the challenges and opportunities remaining in this field will be also proposed to present a perspective to the research on the next step.  相似文献   

9.
80%以上的工业生产过程涉及催化,如化工生产、能源转换、制药和废物处理等等.催化剂的使用显著提高了生产效率,降低了生产成本,为国民经济、地球环境和人类文明的可持续发展做出了很大贡献.为了满足日益增长的生产需求和最大的经济效益,开发高效、稳定、低成本的新型催化剂已成为当务之急.金属中心负载在载体上的负载型金属催化剂因其较好的催化活性和相对较低的金属用量而受到广泛关注.研究发现,负载型结构可增强传热和传质并增加活性金属中心的分散度,从而影响催化性能.此外,负载金属的颗粒尺寸对催化剂的性能有很大影响.迄今为止,科学家们一直在通过减小金属颗粒尺寸和提高原子利用效率来提高催化剂的活性.原子级尺寸的颗粒通常表现出与大尺寸颗粒显着不同的物理和化学性质,而当活性位点的尺寸缩小到单个原子时,单原子催化剂的概念应运而生.对于单原子催化剂,金属原子中心通过配位被载体中的缺陷锚定,从而调整金属原子的电子云分布.这种配位调整使得单原子催化剂拥有与传统催化剂不同的性能.作为催化领域的新前沿,单原子催化剂已经在许多催化反应中表现出前所未有的活性和选择性.然而,许多报道的单原子催化剂在高温环境或长期催化应用中容易受到奥斯特瓦尔德熟化过程的影响,从而导致催化剂烧结和失活.而烧结的原因在于金属原子和载体之间较弱的相互作用.失活催化剂的再生和回收将大大增加工业生产的时间和经济成本.因此,开发具有优异热稳定性的单原子催化剂以满足工业需求是十分必要的.本综述首先总结了近年来关于热稳定型单原子催化剂合成方法的基础研究,并从原子尺度上分析了这些方法所构建的金属中心的结构形态和配位环境.此外,结合近些年的研究中新的表征技术与理论计算手段解释了热稳定性的来源.重点讨论了热稳定单原子催化剂的实际催化应用.分析了热稳定单原子催化剂在热催化应用中的独特作用机理、并尝试为确定催化过程中真正的活性中心以及通过原子级调控手段进行高活性热稳定单原子催化剂的合成提供理论指导.最后总结了热稳定单原子催化剂发展的主要问题,并简要分析了单原子催化领域的研究挑战和发展前景.  相似文献   

10.
Developing clean and sustainable energies as alternatives to fossil fuels is in strong demand within modern society. The oxygen evolution reaction (OER) is the efficiency-limiting process in plenty of key renewable energy systems, such as electrochemical water splitting and rechargeable metal–air batteries. In this regard, ongoing efforts have been devoted to seeking high-performance electrocatalysts for enhanced energy conversion efficiency. Apart from traditional precious-metal-based catalysts, nickel-based compounds are the most promising earth-abundant OER catalysts, attracting ever-increasing interest due to high activity and stability. In this review, the recent progress on nickel-based oxide and (oxy)hydroxide composites for water oxidation catalysis in terms of materials design/synthesis and electrochemical performance is summarized. Some underlying mechanisms to profoundly understand the catalytic active sites are also highlighted. In addition, the future research trends and perspectives on the development of Ni-based OER electrocatalysts are discussed.  相似文献   

11.
Low-temperature fuel cells are appealing alternatives to the conventional internal combustion engines for transportation applications. However, in order for them to be commercially viable, effective, stable and low-cost electrocatalysts are needed for the Oxygen Reduction Reaction (ORR) at the cathode. In this contribution, on the basis of Density Functional Theory (DFT) calculations, we show that graphitic materials with active sites composed of 4 nitrogen atoms and transition metal atoms belonging to groups 7 to 9 in the periodic table are active towards ORR, and also towards Oxygen Evolution Reaction (OER). Spin analyses suggest that the oxidation state of those elements in the active sites should in general be +2. Moreover, our results verify that the adsorption behavior of transition metals is not intrinsic, since it can be severely altered by changes in the local geometry of the active site, the chemical nature of the nearest neighbors, and the oxidation states. Nonetheless, we find that these catalysts trend-wise behave as oxides and that their catalytic activity is limited by exactly the same universal scaling relations.  相似文献   

12.
Photocatalysis has been known as one of the promising technologies due to its eco-friendly nature. However, the potential application of many photocatalysts is limited owing to their large bandgaps and inefficient use of the solar spectrum. One strategy to overcome this problem is to combine the advantages of heteroatom-containing supports with active metal centers to accurately adjust the structural parameters. Metal nanoparticles (MNPs) and single atom catalysts (SACs) are excellent candidates due to their distinctive coordination environment which enhances photocatalytic activity. Metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and carbon nitride (g-C3N4) have shown great potential as catalyst support for SACs and MNPs. The numerous combinations of organic linkers with various heteroatoms and metal ions provide unique structural characteristics to achieve advanced materials. This review describes the recent advancement of the modified MOFs, COFs and g-C3N4 with SACs and NPs for enhanced photocatalytic applications with emphasis on environmental remediation.  相似文献   

13.
Carbon-based single-atom catalysts(SACs) with atomic sizes of active sites have become the promising candidates for a variety of catalytic systems because of their high atom utilization, and unique electronic structures. Different types of single-atom sites can be fabricated via multiple preparation strategies, which would demonstrate distinct different coordination configurations and electronic features, and ultimately affected the structure-catalysis relationship of SACs in targeted reactions....  相似文献   

14.
单原子催化剂(SACs)是指金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂.与传统载体型催化剂相比,SACs具有活性高、选择性好及贵金属利用率高等优点,在氧化反应、加氢反应、水煤气变换、光催化制氢以及电化学催化等领域都具有广泛应用,是目前催化领域的研究热点之一.常见的SACs制备方法有共沉淀法、浸渍法、置换反应法、原子层沉积法以及反奥斯瓦尔德熟化法等.实验及理论研究表明,单原子催化剂高的活性和选择性可归因于活性金属原子和载体之间的相互作用及由此引起的电子结构改变.载体是影响单原子催化剂性能的重要因素之一.目前常用的SACs载体有金属氧化物、二维材料和金属纳米团簇等,本文着重综述了这三种负载型SACs的制备、表征、催化性能及催化机理,并概述了SACs未来可能的发展方向和应用.研究表明,共沉淀法、湿浸渍法和反奥斯瓦尔德熟化法等方法可用来制备氧化物负载的SACs.高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)表明金属是以单原子形式均匀分散在载体上,近边X射线吸收精细结构(XANES)结果表明金属原子与载体之间存在着强相互作用.实验和理论研究均表明该类催化剂在CO氧化反应、水煤气转化及乙炔加氢生成乙烯等反应中具有高的催化活性和稳定性.采用化学气相沉积法和原子层沉积法等方法可以将金属原子稳定地负载在具有缺陷活性位点的石墨烯、MXene及六方氮化硼等二维材料上并相应制备出SACs.X射线吸收精细结构谱(EXAFS)和XANES分析表明样品中金属以单原子形式存在,而且金属原子与载体之间也存在着强相互作用,理论计算表明金属原子与二维载体之间的电荷转移是SACs活性高的主要原因.置换反应法和连续还原法是制备溶胶型SACs的有效方法,其中置换反应法可将活性金属原子原位组装在金属模板团簇的顶点位置,连续还原法可将活性原子负载于金属模板团簇的表面.DFT计算表明活性原子和金属模板团簇之间存在电荷转移效应,这是溶胶型SACs具有非常高的催化活性的主要原因.SACs下一步的研究方向可能是:(1)研究开发新型SACs,尽可能提高催化剂中活性金属原子的含量;(2)深入研究SACs的结构、活性以及催化机理之间的关系;(3)尝试将SACs大规模应用于工业催化.  相似文献   

15.
Ping Li  Wei Chen 《催化学报》2019,40(1):4-22
Catalysts play decisive roles in determining the energy conversion efficiencies of energy devices. Up to now, various types of nanostructured materials have been studied as advanced electrocatalysts. This review highlights the application of one-dimensional (1D) metal electrocatalysts in energy conversion, focusing on two important reaction systems—direct methanol fuel cells and water splitting. In this review, we first give a broad introduction of electrochemical energy conversion. In the second section, we summarize the recent significant advances in the area of 1D metal nanostructured electrocatalysts for the electrochemical reactions involved in fuel cells and water splitting systems, including the oxygen reduction reaction, methanol oxidation reaction, hydrogen evolution reaction, and oxygen evolution reaction. Finally, based on the current studies on 1D nanostructures for energy electrocatalysis, we present a brief outlook on the research trend in 1D nanoelectrocatalysts for the two clean electrochemical energy conversion systems mentioned above.  相似文献   

16.
《中国化学快报》2023,34(8):108278
Metal-based catalysts with different site sizes (e.g., metal nanoparticles (NPs) and single atom catalysts (SACs)) demonstrated outstanding catalytic activities in versatile Fenton-like reactions. However, the surface/structural instability is a critical issue, which will result in rapid passivation in Fenton-like reaction and fail in long-term operation. The catalytic stability of the catalysts with different metal sizes considering versatile peroxides (H2O2, peroxymonosulfate (PMS), and peroxodisulfate (PDS)) should be analyzed. In addition, strategies for catalyst regeneration and recyclability improvement are also important to realize the metal-based catalysts for practical applications. In this review, catalytic stability of catalysts with different metal sizes in the backgrounds of versatile peroxides and water matrixes in Fenton-like reactions were first evaluated. Regeneration of metal catalytic sites with different methods were also reviewed. Finally, major challenges and development of methods concerning the stability and regeneration of metal catalytic sites with different sizes were discussed to understand the future researches of metal catalytic sites in Fenton-like reactions.  相似文献   

17.
The combustion of fossil fuels increases atmospheric carbon dioxide (CO2) concentrations, leading to adverse impacts on the planetary radiation balance and, consequently, on the climate. Fossil fuel utilization has contributed to a marked rise in global temperatures, now at least 1.2 ℃ above 'pre-industrial' levels. To meet the 2015 Paris Agreement target of 1.5 ℃ above pre-industrial levels, considerable efforts are required to efficiently capture and utilize CO2. Among the different strategies developed for converting CO2, electrochemical CO2 reduction (ECR) to valuable chemicals using renewable energy is expected to revolutionize the manufacture of sustainable "green" chemicals, thereby achieving a closed anthropogenic carbon cycle. However, CO2 is a thermodynamically stable and kinetically inert molecule that requires high electrical energy to bend the linear O=C=O bond by attacking the C atom. To facilitate the ECR with good energy efficiency, it is essential to lower the reaction overpotential as well as maintain a high current density and desirable product selectivity; therefore, the design and development of advanced electrocatalysts are crucial. A plethora of heterogeneous and homogeneous materials has been explored in the ECR. Among these materials, single-atom catalysts (SACs) have been the focus of most extensive research in the context of ECR. A SAC with isolated metal atoms dispersed on a supporting host exhibits a unique electronic structure, well-defined coordination environment, and an extremely high atom utilization maximum; thus, SACs have emerged as promising materials over the last two decades. Single-atom catalysis has covered the periodic table from d-block and ds-block metals to p-block metals. The types of support materials for SACs, ranging from metal oxides to tailored carbon materials, have also expanded. The adsorption strength and catalytic activity of SACs can be effectively tuned by modulating the central metal and local coordination structure of the SACs. In this article, we discuss the progress made to date in the field of single-atom catalysis for promoting ECR. We provide a comprehensive review of state-of-the-art SACs for the ECR in terms of product distribution, selectivity, partial current density, and performance stability. Special attention is paid to the modification of SACs to improve the ECR efficiency. This includes tailoring the coordination of the heteroatom, constructing bimetallic sites, engineering the morphologies and surface defects of supports, and regulating surface functional groups. The correlation of the coordination structure of SACs and metal-support interactions with ECR performance is analyzed. Finally, development opportunities and challenges for the application of SACs in the ECR, especially to form multi-carbon products, are presented.  相似文献   

18.
对化石能源的依赖所造成的环境污染和能源危机在全球引起了广泛的关注.氢能由于其高能量密度、低分子质量以及清洁无污染的优点,被认为是人类根本性解决能源与环境等全球性问题的理想替代能源.电解水是生产高纯度氢的重要方法,是现代清洁能源技术的重要组成部分.水电解由阴极析氢(HER)和阳极析氧(OER)两个半反应构成.对于HER反应,其反应是基于二电子转移过程,反应过程相对容易进行.相比于HER反应,OER反应涉及四电子转移及氧-氧键形成,其反应动力学缓慢,是影响水电解效率的主要原因.因此,为了提高电解水制氢的能量转化效率,发展OER电催化剂成为水电解制氢技术的关键.在过去的十余年间,硫化物、硒化物、磷化物、硼化物等非贵金属基OER电催化剂被大量地研究及报道并取得了长足发展.在这些催化剂中,金属磷化物和硫化物不仅具有成本优势,而且在析氧过电位、耐久性方面正趋接近甚至超越RuO_2和IrO_2等贵金属催化剂,颇具应用潜力.本文总结磷化物和硫化物作为OER电催化剂的研究进展,重点介绍了磷化物和硫化物性能提升策略及其在OER过程中催化反应活性位的变化.本文首先介绍了电解水析氧反应在不同电解质中的反应机理,讨论了析氧反应在动力学和热力学过程的主要障碍.通过对大量文献的归纳,本文分别综述了磷化物和硫化物的化学性质、合成方法和催化性能,介绍了近年来磷化物和硫化物的重要研究进展.通过分析催化剂导电性、质子传输、活性面积、界面化学等因素对催化析氧反应的影响,总结了磷化物和硫化物电催化OER性能提升的策略.由于磷化物和硫化物在OER强氧化条件下,电催化剂表面的成分、物相及结构均会发生显著变化,进而催化反应活性位也会发生相应改变.本文综述了磷化物和硫化物在OER反应过程前后表面组分的变化,探讨了磷化物和硫化物作为OER电催化剂的活性组分,为进一步提高磷化物和硫化物的电催化析氧反应性能提供了崭新的思路.  相似文献   

19.
电催化二氧化碳还原(ECR) 制备高值化学品被认为是在碳中和背景下实现可再生能源存储及降低CO2浓度的一种有效策略。为了实现此目标,催化剂的开发与设计是ECR研究的关键。单原子催化剂(SACs) 因其独特的电子结构、明确的配位环境和极高的原子利用率,近年来在ECR领域引起了广泛关注。通过调节SACs的中心金属元素种类和局部配位结构,可有效调节SACs对CO2和其还原中间体的吸附强度和催化活性。本文总结了SACs在ECR领域所取得的最新研究进展,重点讨论了SACs的配位结构及其与载体之间的相互作用对催化活性的影响以及相关调控策略,最后,提出了SACs应用于ECR所面临的机遇与挑战。  相似文献   

20.
双原子催化剂:制备、表征和应用   总被引:1,自引:0,他引:1  
发展可持续和清洁的电化学能源转化技术是应对能源短缺和环境污染挑战的关键一步,燃料电池、电解电池和金属空气电池作为清洁能源储存和转换装置目前得到广泛应用推广,这些装置依靠电催化反应以及电极材料上发生的电荷转移过程来转换电能和化学能.而电催化剂是该类装置电极材料的核心部件,电催化反应的热力学和动力学过程与电催化剂的物理性质和化学状态密切相关.因此探索和开发性能优良、成本低廉的新型电催化剂,将进一步促进这些能源转化技术的商业化应用.单原子催化剂(SACs)以其暴露的活性位点、高选择性和最大限度地原子利用率而受到人们的广泛关注.然而,随着单原子表面自由能的增加,粒子在制备和催化过程中的聚集,催化活性位点的降低和催化剂负荷的相对较低,严重制约了SACs的发展和应用.考虑到SACs的缺点,为了进一步增加单原子活性位点的数量和负载,双原子催化剂(DACs)作为SACs家族成员的扩展近年来逐渐兴起,且两种金属原子(同核/异核)在DACs中的协同作用显著提高了催化剂的催化活性.本文基于当前最新的研究工作对比了同核/异核DACs的不同优势,列举了一系列包括原子层沉积法、湿化学吸附法以及高温热处理法等方法用于制备性能优异的DACs,其中高温热处理法因应用广泛被重点强调.同时,本文也对DACs的表征和识别手段进行了重点概括,包含XANES, EXAFS, IR, DFT等;详细概括和对比了当前DACs在电化学方面的主要应用,如氧还原反应(ORR)和二氧化碳还原反应.目前, DACs作为一个新兴的研究领域,由于其金属原子负载量高、活性位点比SACs更为灵活,已经在电催化领域取得了快速的发展.相对于同核DACs,原则上不同的两个金属原子会组成更多的异核DACs,因此,对于性能优异的异核DACs还有更多的可能性值得深入探索.可以预见, DACs的发展将弥补SACs的不足,在电化学能源的转换和储存方面发挥全面的优势;借助于异核DACs中不同的两个金属原子的多样性,探索以过渡金属为主的DACs,将会为节约贵金属资源及环境保护带来巨大贡献,进一步设计和优化DACs,有利于燃料电池和金属-空气电池创造出更大的经济效益和社会效益.因此,我们相信DACs的发展将成为材料研究的一个新前沿,并为合成更多的高效应用催化剂开辟一条新的途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号