首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of a THF solution of trans-[ReCl(N2)(dppe)2] (dppe = Ph2PCH2CH2PPh2) with NO, in the presence of Tl[BF4], forms trans-[Re(NO)2(dppe)2][BF4], a rare formal 20-electron d8-rhenium nitrosyl complex which, by reaction with HX (X = BF4, Cl or HSO4), gives trans-[ReF(NO)(dppe)2][BF4] (2) (the X-ray structure of which is reported) or trans-[ReX(NO)(dppe)2]X (3, X = Cl or HSO4), respectively, as well as nitrous oxide.  相似文献   

2.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

3.
Oxidative addition of HBF4, CF3SO3H and C4F9SO3H to trans-(Ph3P)2Ir(L)Cl (L = CO, N2) gives the highly reactive irridium(III) complexes (Ph3P)2Ir(L)(Cl)(H)(X) (X = BF4, CF3SO3, C4F9SO3), in which the anion X can be easily substituted by σ- and π-donors. In the dinitrogen complex (Ph3P)2Ir(N2)(Cl)(H)(FBF3) (2a) both the N2 and BF4 ligands are replaced by valinate, diethyldithiocarbamate or tertiary phosphines, respectively. 2a catalyzes the hydrogenation of cyclohexene and the isomerisation of 1,5-cyclooctadiene.  相似文献   

4.
The bidentate phosphine 2,11-bis(diphenylphosphinomethyl)benzo [c]phenanthrene ( 1 ) has been used to prepare the mononuclear, square planar complexes trans-[MX(CO)( 1 )] and trans-[M(CO)(CH3CN)( 1 )][BF4] (M = Rh, Ir; X = Cl, Br, I, NCS). It is found that the tendency of these complexes to form adducts with CO, O2 and SO2 is significantly lower than that of the corresponding Ph3P complexes. The oxidative-addition reactions of complexes trans-[IrX (CO) ( 1 )] with hydrogen halides give the six-coordinate species [IrHX2(CO) ( 1 )]. The complexes [IrH2I (CO) ( 1 )] and [IrH2L (CO) ( 1 )] [BF4] (L = CO and CH3CN) have been obtained from hydrogen and the corresponding substrates. The model compounds trans-[MCl (CO) (Ph2PCH2Ph)2] (M = Rh, Ir), trans-[Ir (CO) (CH3CN) (Ph2PCH2Ph)2] [BF4], [IrHCl2(CO)(Ph2PCH2Ph)2] and [IrH2(CO)2(Ph2PCH2Ph)2] [BF4] have been prepared and their special parameters are compared with those of the corresponding complexes of ligand 1 . The influence of the static requirements of this ligand on the chemistry of its rhodium and iridium complexes is discussed.  相似文献   

5.
Oxidative addition of ClCH2SCH3 to PtL4 afforded trans-PtL2(CH2SCH3)Cl (Ia, L = Ph3P;Ib, L = MePh2P). Treatment of I with NH4PF6 or Et3OBF4 in CH2C12 gave ionic species, [PtL2(CH2SCH3)]X (II, L = Ph3P, MePh2P, X = BF4, PF6), while similar treatment with MeSO3F in benzene yielded a new type of stable dimethylsulfonium methylide—platinum complex, trans-[PtL2(CH2SMe2)Cl] SO3F (IIIa, L = Ph3P; IIIb, L = MePh2P). Action of H2O2 on Ia gave [Pt(Ph3P)(μ-CH2SCH3)C1]2 (IV) and its triphenylarsine analog, [Pt(Ph3As)(μ-CH2SCH3)C1]2 (V) was prepared in one step by oxidative addition of ClCH2SCH3 to Pt(AsPh3)4. The structural difference between [Pt(Ph3P)(μ-CH2SCH3)C1]2 and Pd(Ph3P)- (CH2SCH3)C1 is discussed in terms of the difference in the ionization potential from d10 to d8 electronic state of metals.  相似文献   

6.
The reaction of [Cp(CO)(dppm)Fe]BF4 (1a) with the phosphorus ylide Me3PCH2 yields the novel bis(phosphino)methanideiron complex Cp(CO)Fe(Ph2PCHPPh2) (2), which upon photolysis in the presnece of Me3P is converted into Cp(Me3P)Fe(Ph2PCHPPh2 (3). Reaction of 2 with MeOSO2CF3 gives a mixture of the iron salts [(Cp(CO)Fe(Ph2PCR(R′)PPh2)]CF3SO3 (R = R′ = H (1b), R = R′ = Me (6) and R = H, R′ = Me (syn/anti-4)).  相似文献   

7.
Reaction of NCC6H4X-4 (X  Me, OMe, or Cl) with trans-[ReCl(N2)(dppe)2] (dppe  Ph2PCH2CH2PPh2), at room temperature, in the presence of Tl[BF4], gives the corresponding complexes cis-[Re(NCC6H4X-4)2(dppe)2][BF4] (1); the crystal structure of 1 (X  Me) has been determined by single crystal X-ray diffraction analysis.  相似文献   

8.
A series of mononuclear ruthenium complexes containing pyridine- and pyrimidine-2-thiolato ligands was prepared and characterized. The new compounds of general formula CpRu(PPh3)(κ2S,N-SR) (1) (SR = pyridine-2-thiolate (a), pyrimidine-2-thiolate (b)) were prepared directly by reacting the thiolato anions (RS) with CpRu(PPh3)2Cl. Complexes 1 readily react with NOBF4 or CO in THF at room temperature to give [CpRu(PPh3)(NO)(κ1S-HSR)][BF4]2 (2) and CpRu(PPh3)(CO)(κ1S-SR) (3), respectively. The one-pot reaction of CpRu(PPh3)2Cl, thiolato anions and bis(diphenylphosphino)ethane (dppe) gave CpRu(dppe)(κ1S-SR) [dppe: Ph2PCH2CH2PPh2 (4)]. The complex salts, [CpRu(PPh3)21S-HSR)]BPh4 (5) are prepared by mixing CpRu(PPh3)2Cl, HSR and NaBPh4 at room temperature. The structures of CpRu(PPh3)(κ2S,N-Spy) (1a), [CpRu(PPh3)(NO)(κ1S-HSpy)][BF4]2 (2a) and CpRu(PPh3)(CO)(κ1S-Spy) (3a), (py = C5H4N) have been determined.  相似文献   

9.
Complexes trans-[PtX(L)(PPh3)2]A [1: X = CF3; A = BF4; L = NCNH2, NCNMe2, NCNEt2, or NCNC(NH2)2. 2: X = Cl; A = BPh4; L = NCNMe2 or NCNEt2] and cis-[PtCl(L)(PPh3)2][BPh4] [3: L = NCNH2 or NCNC(NH2)2], which appear to be the first cyanamide or cyanoguanidine complexes of platinum to be reported, have been prepared by treatment of trans-[PtBr(CF3)(PPh3)2] (in CH2Cl2/acetone and in the presence of Ag[BF4]) or of cis-[PtCl2(PPh3)2] (in THF and in the presence of Na[BPh4]), respectively, with the appropriate substrate. In KBr pellets or in solution 1 (L = NCNMe2 or NCNEt2) undergoes ready replacement of the organocyanamide (under the trans influence of CF3) by bromide to regenerate trans-(PtBr(CF3)(PPh3)2]. The X-ray structure of 1 (X = CF3, A = BF4, L = NCNEt2) is also reported, and shows the presence of two apical intramolecular contacts of the metal with two ortho-hydrogen atoms of the phosphines, whereas the amine N atom of the diethylcyanamide is trigonal planar in the linear NCN framework with a delocalized π system.  相似文献   

10.
The 1,5-bis(3,5-dimethyl-1-pyrazolyl)-3-thiapentane ligand (bdtp) reacts with [Rh(COD)(THF)2][BF4] to give [Rh(COD)(bdtp)][BF4] ([1][BF4]), which is fluxional in solution on the NMR time scale. Its further treatment with carbon monoxide leads to a displacement of the 1,5-cyclooctadiene ligand, generating a mixture of two complexes, namely, [Rh(CO)2(bdtp)][BF4] ([2][BF4]) and [Rh(CO)(bdtp3N,N,S)][BF4] ([3][BF4]). In solution, [2][BF4] exists as a mixture of two isomers, [Rh(CO)2(bdtp2N,N)]+ ([2a]+) and [Rh(CO)2(bdtp3N,N,S)]+ ([2b]+; major isomer) rapidly interconverting on the NMR time scale. At room temperature, [2][BF4] easily loses one molecule of carbon monoxide to give [3][BF4]. The latter is prone to react with carbon monoxide to partially regenerate [2][BF4]. The ligands 1,2-bis[3-(3,5-dimethyl-1-pyrazolyl)-2-thiapropyl]benzene (bddf) and 1,8-bis(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo) are seen to react with two equivalents of [Rh(COD)(THF)2][BF4] to give the dinuclear complexes [Rh2(bddf)(COD)2][BF4]2 ([4][BF4]2) and [Rh2(bddo)(COD)2][BF4]2 ([5][BF4]2), respectively. In such complexes, the ligand acts as a double pincer holding two rhodium atoms through a chelation involving S and N donor atoms. Bubbling carbon monoxide into a solution of [4][BF4]2 results in loss of the COD ligand and carbonylation to give [Rh2(bddf)(CO)4][BF4]2 ([6][BF4]2). The single-crystal X-ray structures of [3][CF3SO3], [5][BF4]2 and [6][BF4]2 are reported.  相似文献   

11.
The reactions of [Sn(Ph)2(Ph2PC6H4-2-S)2] with trans -[M(Cl)(CO)(PPh3)2] M=Ir, Rh afford the complexes [Rh(Ph2PC6H4-2-S)2(SnClPh2)] (1) and [Ir(CO)(Ph2PC6H4-2-S)2(SnClPh2)] (2) as final products of two processes, a transmetallation reaction and an oxidative addition process. The crystal structures of both complexes have been determined, showing the rhodium compound to be into a slightly distorted square base pyramidal geometry, while that of the iridium derivative can be described as a distorted octahedron.  相似文献   

12.
Substituted phosphines of the type Ph2PCH(R)PPh2 and their PtII complexes [PtX2{Ph2PCH(R)PPh2}] (R = Me, Ph or SiMe3; X = halide) were prepared. Treatment of [PtCl2(NCBut)2] with Ph2PCH(SiMe3)-PPh2 gave [PtCl2(Ph2PCH2PPh2)], while treatment with Ph2PCH(Ph)PPh2 gave [Pt{Ph2PCH(Ph)PPh2}2]Cl2. Reaction of p-MeC6H4C≡CLi or PhC≡CLi with [PtX2{Ph2PCH(Me)PPh2}] gave [Pt(C≡CC6H4Me-p)2-{Ph2PCH(Me)PPh2}] (X = I) and [Pt{Ph2PC(Me)PPh2}2](X = Cl),while reaction of p-MeC6H4C≡CLi with [Pt{Ph2PCH(Ph)PPh2}2]Cl2 gave [Pt{Ph2PC(Ph)PPh2}2]. The platinum complexes [PtMe2(dpmMe)] or [Pt(CH2)4(dpmMe)] fail to undergo ring-opening on treatment with one equivalent of dpmMe [dpmMe = Ph2PCH(Me)PPh2]. Treatment of [Ir(CO)Cl(PPh3)2] with two equivalents of dpmMe gave [Ir(CO)(dpmMe)2]Cl. The PF6 salt was also prepared. Treatment of [Ir(CO)(dpmMe)2]Cl with [Cu(C≡CPh)2], [AgCl(PPh3)] or [AuCl(PPh3)] failed to give heterobimetallic complexes. Attempts to prepare the dinuclear rhodium complex [Rh2(CO)3(μ-Cl)(dpmMe)2]BPh4 using a procedure similar to that employed for an analogous dpm (dpm = Ph2PCH2PPh2) complex were unsuccessful. Instead, the mononuclear complex [Rh(CO)(dpmMe)2]BPh4 was obtained. The corresponding chloride and PF6 salts were also prepared. Attempts to prepare [Rh(CO)(dpmMe)2]Cl in CHCl3 gave [RhHCl(dpmMe)2]Cl. Recrystallization of [Rh(CO)(dpmMe)2]BPh4 from CHCl3/EtOH gave [RhO2(dpmMe)2]BPh4. Treatment of [Rh(CO)2Cl2]2 with one equivalent of dpmMe per Rh atom gave two compounds, [Rh(CO)(dpmMe)2]Cl and a dinuclear complex that undergoes exchange at room temperature between two formulae: [Rh2(CO)2(μ-Cl)(μ-CO)(dpmMe)2]Cl and [Rh2(CO)2-(μ-Cl)(dpmMe)2]Cl. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The P-functional organotin chloride Ph2PCH2CH2SnCl3 reacts with [(COD)MCl2] and trans-[(Et2S)2MCl2] (M=Pd, Pt) in molar ratio 1:1 to the zwitterionic complexes [(COD)M+(Cl)(PPh2CH2CH2SnCl4)] (1: M=Pd; 2: M=Pt) and trans-[(Et2S)2M+(Cl)(PPh2CH2CH2SnCl4)] (3: M=Pd; 4: M=Pt). The same reaction with [(COD)Pd(Cl)Me] yields under transfer of the methyl group from palladium to tin the complex [(COD)M+(Cl)(PPh2CH2CH2SnMeCl3)] (5) which changes in acetone into the dimeric adduct [Cl2Pd(PPh2CH2CH2SnMeCl2·2Me2CO)]2 (6). In molar ratio 2:1 Ph2PCH2CH2SnCl3 reacts with [(COD)MCl2] to the complexes [Cl2Pd(PPh2CH2CH2SnCl3)2] (7: M=Pd, mixture of cis/trans isomer; 8: M=Pt, cis isomer). In a subsequent reaction 8 is transformed in acetone into the 16-membered heterocyclic complex cis-[Cl2Pt(PPh2CH2CH2)2SnCl2]2 (9). trans-[(Et2S)2PtCl2] and Ph2PCH2CH2SnCl3 in molar ratio 1:2 yields the zwitterionic complex [(Et2S)M+(Cl)(PPh2CH2CH2SnCl3)(PPh2CH2CH2SnCl4)] (10). The results of crystal structure analyses of 1, 3, 6, 9 and of the adduct of the trans-isomer of 7 with acetone (7a) are reported. 31P- and 119Sn-NMR data of the complexes are discussed.  相似文献   

14.
Chong Shik Shin 《Polyhedron》1985,4(9):1673-1675
The reaction of [IrL(CO)(PPh3)2]ClO4 (PPh3 = triphenylphosphine) with H2 produces new cationic dihydridoiridium(III) complexes of nitriles (L), [Ir(H)2L(CO)(PPh3)2]ClO4 [L = CH3CN (1), CH3CH2CN (2), CH3CH2CH2CN (3) and C6H5CN (4)], where nitriles are coordinated through the nitrogen atom. Proton NMR spectral data for complexes 1–4 suggest that the two hydrides in each complex are cis to each other and trans to CO and nitrogen (nitrile), and the two PPh3 are trans to each other.  相似文献   

15.
Halide abstraction from [Pd(μ-Cl)(Fmes)(NCMe)]2 (Fmes = 2,4,6-tris(trifluoromethyl)phenyl or nonafluoromesityl) with TlBF4 in CH2Cl2/MeCN gives [Pd(Fmes)(NCMe)3]BF4, which reacts with monodentate ligands to give the monosubstituted products trans-[Pd(Fmes)L(NCMe)2]BF4 (L = PPh3, P(o-Tol)3, 3,5-lut, 2,4-lut, 2,6-lut; lut = dimethylpyridine), the disubstituted products trans-[Pd(Fmes)(NCMe)(PPh3)2]BF4, cis-[Pd(Fmes)(3,5-lut)2(NCMe)]BF4, or the trisubstituted products [Pd(Fmes)L3]BF4 (L = CNtBu, PHPh2, 3,5-lut, 2,4-lut). Similar reactions using bidentate chelating ligands give [Pd(Fmes)(L-L)(NCMe)]BF4 (L-L = bipy, tmeda, dppe, OPPhPy2-N,N′, (OH)(CH3)CPy2-N,N′). The complexes trans-[Pd(Fmes)L2(NCMe)]BF4 (L = PPh3, tht) (tht = tetrahydrothiophene) and [Pd(Fmes)(L-L)(NCMe)]BF4 (L-L = bipy, tmeda) were obtained by halide extraction with TlBF4 in CH2Cl2/MeCN from the corresponding neutral halogeno complexes trans-[Pd(Fmes)ClL2] or [Pd(Fmes)Cl(L-L)]. The aqua complex trans-[Pd(Fmes)(OH2)(tht)2]BF4 was isolated from the corresponding acetonitrile complex. Overall, the experimental results on these substitution reactions involving bulky ligands suggest that thermodynamic and kinetic steric effects can prevail affording products or intermediates different from those expected on purely electronic considerations. Thus,water, whether added on purpose or adventitious in the solvent, frequently replaces in part other better donor ligands, suggesting that the smaller congestion with water compensates for the smaller M-OH2 bond energy.  相似文献   

16.
2-(Azidomethyl)phenyl isocyanide, 2-(CH2N3)C6H4NC (AziNC), coordinates to some cationic Pt(II) and Pd(II) species to afford isocyanide complexes of the type trans-[MCl(AziNC)(PPh3)2][BF4] (M=Pt, l; Pd, 2). AziNC is coordinated also in some neutral Pt(II) and Pd(II) species such as [MCl2(AziNC)2] (M=Pt, 3; Pd, 4) derived from the reactions of 2 equiv. of AziNC with [PtCl2(COD)] and [PdCl2(MeCN)2], respectively. Complexes 1 and 2 react with 1 equiv. of PPh3 affording the heterocyclic carbene complexes trans-[MCl{(H)}(PPh3)2][BF4] (M=Pt, 5; Pd, 6). Complexes 3 and 4 react with 1 equiv. of PPh3 displacing the isocyanide with the formation of the complexes cis-[MCl2(AziNC)(PPh3)] (M=Pt, 7; Pd, 8). These latter ones react with 2 equiv. of PPh3 affording as the final products the cationic carbene species trans-[MCl{(H)}(PPh3)2][Cl] (M=Pt, 9; Pd, 10). Complex 5 was also characterized by single crystal X-ray diffraction. The carbene complex is square-planar and the angle formed between the platinum square plane and the heterocyclic carbene ligand is 87.9(2)°. The C(1)-N(1) and C(1)-N(2) bond distances in the latter of 1.32(2) and 1.30(2) Å, respectively, are short for a single bond and indicate extensive π-bonding between the nitrogen atoms and the carbene carbon.  相似文献   

17.
The reactions of [Pt(PEt3)4] with various azoles afforded platinum(II) hydride complexes of the type trans-[PtH(1-azolyl)(PEt3)2], where azolyl=indolyl (1), imidazolyl (2), benzimidazolyl (3), pyrazolyl (4) and indazolyl (5), by oxidative insertion of the metal centre into the N-H bonds of the respective azoles. Pyrrole was much less reactive. Complexes trans-[PtH(R)(PEt3)2], where R=2-furyl (6), 2-benzoxazolyl (7) and 2-benzothiazolyl (8) were prepared via C-H bond activation. For benzothiazole, insertion into the C-S bond did not occur. Analogous C-H activation products with 1-methylpyrrole and dibenzofuran could not be isolated.  相似文献   

18.
Interaction of [Ru(NO)Cl3(PPh3)2] with K[N(R2PS)2] in refluxing N,N-dimethylformamide afforded trans-[Ru(NO)Cl{N(R2PS)2}2] (R = Ph (1), Pri (2)). Reaction of [Ru(NO)Cl3(PPh3)2] with K[N(Ph2PSe)2] led to formation of a mixture of trans-[Ru(NO)Cl{N(Ph2PSe)2}2] (3) and trans-[Ru(NO)Cl{N(Ph2PSe)2}{Ph2P(Se)NPPh2}] (4). Reaction of Ru(NO)Cl3 · xH2O with K[N(Ph2PO)2] afforded cis-[Ru(NO)(Cl){N(Ph2PO)2}2] (5). Treatment of [Rh(NO)Cl2(PPh3)2] with K[N(R2PQ)2] gave Rh(NO){N(R2PQ)2}2] (R = Ph, Q = S (6) or Se (7); R = Pri, Q = S (8) or Se (9)). Protonation of 8 with HBF4 led to formation of trans-[Rh(NO)Cl{HN(Pri2PS)2}2][BF4]2 (10). X-ray diffraction studies revealed that the nitrosyl ligands in 2 and 4 are linear, whereas that in 9 is bent with the Rh–N–O bond angle of 125.7(3)°.  相似文献   

19.
The oxidative addition of selenol, HhfSeH (2, Hhf = 9,10,11,12,14,15-hexahydro-9,10[3′,4′]-furanoanthracenyl) with [Pt(η2-nb)(Ph3P)2] (nb = norbornene) in toluene afforded the corresponding hydrido(selenolato) Pt(II) complex [cis-PtH(SeHhf)(Ph3P)2] (3) as a stable compound. Refluxing a xylene solution of 3 produced two isomers of five-membered selenaplatinacycles 4 in moderate yield as an inseparable mixture. In addition, the molecular structures of HhfSeH 2 and the minor selenaplatinacycle 4a were determined by X-ray crystallography.  相似文献   

20.
Optically active ligands of type Ph2PNHR (R = (R)-CHCH3Ph, (a); (R)-CHCH3Cy, (b); (R)-CHCH3Naph, (c)) and PhP(NHR)2 (R = (R)-CHCH3Ph, (d); (R)-CHCH3Cy, (e)) with a stereogenic carbon atom in the R substituent were synthesized. Reaction with [PdCl2(COD)2] produced [PdCl2P2] (1) (P = PhP(NHCHCH3Ph)2), whose molecular structure determined by X-ray diffraction showed cis disposition for the ligands. All nitrogen atoms of amino groups adopted S configuration. The new ligands reacted with allylic dimeric palladium compound [Pd(η3-2-methylallyl)Cl]2 to gave neutral aminophosphine complexes [Pd(η3-2-methylallyl)ClP] (2a-2e) or cationic aminophosphine complexes [Pd(η3-2-methylallyl)P2]BF4 (3a-3e) in the presence of the stoichiometric amount of AgBF4. Cationic complexes [Pd(η43-2-methylallyl)(NCCH3)P]BF4 (4a-4e) were prepared in solution to be used as precursors in the catalytic hydrovinylation of styrene. 31P NMR spectroscopy showed the existence of an equilibrium between the expected cationic mixed complexes 4, the symmetrical cationic complexes [Pd(η3-2-methylallyl)P2]BF4 (3) and [Pd(η3-2-methylallyl)(NCCH3)2]BF4 (5) coming from the symmetrization reaction. The extension of the process was studied with the aminophosphines (a-e) as well as with nonchiral monodentate phosphines (PCy3 (f), PBn3 (g), PPh3 (h), PMe2Ph (i)) showing a good match between the extension of the symmetrization and the size of the phosphine ligand. We studied the influence of such equilibria in the hydrovinylation of styrene because the behaviour of catalytic precursors can be modified substantially when prepared ‘in situ’. While compounds 3 and bisacetonitrile complex 5 were not active as catalysts, the [Pd(η3-2-methylallyl)(η2-styrene)2]+ species formed in the absence of acetonitrile showed some activity in the formation of codimers and dimers. Hydrovinylation reaction between styrene and ethylene was tested using catalytic precursors solutions of [Pd(η3-2-methylallyl)LP]BF4 ionic species (L = CH3CN or styrene) showing moderate activity and good selectivity. Better activities but lower selectivities were found when L = styrene. Only in the case of the precursor containing Ph2PNHCHCH3Ph (a) ligand was some enantiodiscrimination (10%) found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号