首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The thermal behavior and kinetic analysis of ammonium uranyl carbonate decomposition has been studied in inert gas, O2, and 90%Ar–10%H2 atmospheres under non-isothermal conditions. The results showed a dependence on specific surface area with the decomposition temperature of ammonium uranyl tri-carbonate (AUC). Specific surface area increases and reaches a maximum between 300 and 400 °C and decreases at T > 400 °C. The reaction paths of AUC decomposition under the three atmospheres were proposed. The integral methods Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) were used for the kinetic analysis. The activation energy averages are 58.01 and 56.19 kJ/mol by KAS and FWO methods, respectively.

  相似文献   

2.

The mechanism and kinetics of thermal degradation of materials developed from cellulose fiber and synergetic fire retardant or expandable graphite have been investigated using thermogravimetric analysis. The model-free methods such as Kissinger–Akahira–Sunose (KAS), Friedman, and Flynn–Wall–Ozawa (FWO) were applied to measure apparent activation energy (Eα). The increased Eα indicated a greater thermal stability because of the formation of a thermally stable char, and the decreased Eα after the increasing region related to the catalytic reaction of the fire retardants, which revealed that the pyrolysis of fire retardant-containing cellulosic materials through more complex and multi-step kinetics. The Friedman method can be considered as the best method to evaluate the Eα of fire-retarded cellulose thermal insulation compared with the KAS and FWO methods. A master-plots method such as the Criado method was used to determine the possible degradation mechanisms. The degradation of cellulose thermal insulation without a fire retardant is governed by a D3 diffusion process when the conversion value is below 0.6, but the materials containing synergetic fire retardant and expandable graphite fire retardant may have a complicated reaction mechanism that fits several proposed theoretical models in different conversion ranges. Gases released during the thermal degradation were identified by pyrolysis–gas chromatography/mass spectrometry. Fire retardants could catalyze the dehydration of cellulosic thermal insulating materials at a lower temperature and facilitate the generation of furfural and levoglucosenone, thus promoting the formation of char. These results provide useful information to understand the pyrolysis and fire retardancy mechanism of fire-retarded cellulose thermal insulation.

  相似文献   

3.
In this study, an energetic binder is synthesized via ring opening copolymerization of ε‐caprolactone with poly (glycidyl nitrate) (PGN) of low molecular weight (Mn = 1350 g mol?1) as a macroinitiator to form triblock copolymer polycaprolactone‐PGN‐polycaprolactone (PCL‐PGN‐PCL) (Mn = 4128 g mol?1). The effects of catalyst type and its concentration, reaction time, and solvent are investigated in this polymerization reaction. The resulting triblock copolymer is characterized by Fourier transform infrared spectroscopy (FT‐IR), nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The DSC result shows that the glass transition temperature of triblock copolymer (Tg = ?50°C) is lower than PGN (Tg = ?35°C). Also, the decomposition kinetics of this energetic binder is studied by DSC, TGA, and its derivative (DTG). An advanced isoconversional method is applied for kinetic analysis. Activation energy is calculated by Flynn‐Wall‐Ozawa (FWO) and Kissinger methods. The resulting activation energy from Kissinger method for the first and the second steps are 42.98 and 74.56 kJ mol?1, respectively. Also, it is found from FWO results that the activation energy for the copolymer increases with degradation degree (α).  相似文献   

4.

In this paper, it was suggested the use of green corn husk, which is a biomass from agro-industry, as an alternative source of energy through its pyrolysis. Green corn husk characterization was done through immediate and elemental analysis of its components: cellulose, hemicelluloses, and lignin. It was also measured its higher calorific value. The pyrolysis study of green corn husk was done by the isoconversion and the Master plots method. Thermogravimetric plots were obtained at heating rates of 5, 10, 15, and 20 °C min?1. The pyrolysis kinetics parameters were studied through the Flynn–Wall–Ozawa (FWO), Kissinger, and Friedman models. The Master plots method was used to determine the pyrolysis reaction order. The results of the reaction energy activation were found to be in the range 105.21–157.46 kJ mol?1 by the FWO method, 150.50 kJ mol?1 by the Kissinger method, and ranged 120.66–163.81 kJ mol?1 by the Friedman method. The Master plots method showed a three-way-transport diffusional kinetics for the biomass de-volatilization process. The higher calorific value found for green corn husk was 16.14 MJ kg?1. The simulation showed correlation between the experimental data and the proposed model for conversion values up to 0.8.

  相似文献   

5.
In this article, thermal degradation behavior of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)-based plastic-bonded explosives (PBXs) bonded with a different fluoropolymer matrices namely indigenous poly(vinylidene fluoride-chlorotrifluoroethylene) (FKM), FK 800, fluoroplastic F-32L and fluororubber SKF 32 was investigated through non-isothermal thermogravimetric analysis (TG) technique under nitrogen atmosphere. It was observed that the mass loss of PBXs containing FKM and FK 800 matrices occurred in three steps. The mass loss of PBXs containing fluoroplastic F-32L and fluororubber SKF 32 occurred in two steps. Kinetics were investigated through non-isothermal TG at different heating rates for the first step of degradation by means of model-free Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) methods. The activation energies calculated by applying FWO method are in good agreement and very close to those obtained by KAS method. The results revealed that the effect of the polymer matrices on the thermal degradation reaction of TATB was significantly observed especially different outcomes of kinetic parameters. The reaction models for degradation were also studied by Criado method. The reaction models are probably best described by the power law and diffusion models.  相似文献   

6.
Silica derived from the renewable resource rice husk is modified using stearic acid and N-[4-(chlorocarbonyl)phenyl]maleimide. These materials are used as fillers in the bismaleimide, 4,4′-bismaleimidodiphenylmethane (BMIM), and thermally cured. The thermogravimetric (TG) curves for polyBMIM/silica composites showed no pronounced changes compared to the TG curve for the pure polyBMIM. Kissinger–Akahira–Sunose, Flynn–Wall–Ozawa, and Friedman methods are used to compute the activation energy (E a) for degradation. Silica and surface-modified silica using stearic acid dispersed by ultrasonication increase the activation energy for degradation and show considerable influence on the thermal stability of cured BMIM. The long alkyl chain present in the stearic acid modified silica and the bulky spacer present in the chemically modified silica definitely alter the degradation process of cured BMIM. The SEM studies indicated uniform dispersion of the silica particles in the polyBMIM.  相似文献   

7.
The polythiophene nanoparticles (nano-PT) were prepared with average diameter of 20–35 nm. The nanostructurals of polythiophene were confirmed by TEM and SEM analyzes. The kinetics of the thermal degradation and thermal oxidative degradation of nano-PT were investigated by thermogravimetric analysis. Kissinger method, Flynn–Wall–Ozawa method, and advanced isoconversional method have been used to determine the activation energies of nano-PT degradation. The results showed that the thermal stability of nano-PT in pure N2 is higher than that in air atmosphere. The analyzes of the solid-state processes mechanism of nano-PT by Criado et al. method showed: the thermal degradation process of nano-PT goes to a mechanism involving second-order (F 2 mechanism); otherwise, the thermo-oxidative degradation process of nano-PT is corresponding to a phase boundary controlled reaction mechanism (R 2 mechanism).  相似文献   

8.
A novel poly(ester-ether-imide) (PEEI) based on N′,N-bis(2-hydroxyethyl)-pyromellitimide unit was synthesized via a conventional two-stage procedure with 1,4-butanediol (BD), dimethyl terephthalate (DMT) and poly(tetramethylene glycol) (PTMG1000). The structures of imide dihydric alcohol and PEEI were confirmed by FT-IR and 1H-NMR spectra, respectively. The thermal properties and mechanical properties were investigated. The results show PEEI possesses good mechanical properties and excellent thermal stability with the 5% weight loss temperature of the PEEI at 367.3°C, and melting temperature of hard segments (Tmh) at 209.7°C. In addition, the kinetic parameters of thermal degradation of the PEEI were studied by thermogravimetric analysis (TGA) at different heating rates. The activation energy of the solid-state process was determined to be 174.83 and 175.83 kJ/mol using Kissinger and Flynn–Wall–Ozawa methods, respectively. The degradation mechanism model of PEEI was determined bythe Coats-Redfern method. Compared with the values obtained from the Kissinger and Flynn–Wall–Ozawa methods, the actual reaction mechanism of the novel PEEI is a F1 type (Random nucleation with one nucleus on the individual particle nucleation) and growth model with integral g(a)=?ln(1?a)).  相似文献   

9.
Thermal dehydration and decomposition processes of a Pd(II) coordination compound, [PdL4]Cl2·3H2O ( 1 ), (where L is 1‐allylimidazole) were studied by simultaneous TG/DSC techniques under constant heating rates condition. The released gas products were analyzed by online coupling a FTIR spectrometer to the TG equipment. The so obtained evolved gas analysis confirmed that only two ligand molecules were released and that a new 1‐allylimidazole Pd(II) complex, trans‐[PdL2Cl2] ( 2a ), was obtained. The same coordination compound was also prepared by heating 1 at 413.15 K in air atmosphere until a constant weight was reached 2b . Thermal decomposition mechanisms for the 2a and 2b complexes examined were proposed according to the three mass loss steps derived by TG data. Based on the model‐free isoconversional method described by Flynn–Wall–Ozawa (FWO), the dependencies of activation energy on the degree of conversion were determined. A model‐free “single point” method was also applied using the Kissinger equation, and derived results were compared to those of the former method. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 667–674, 2005  相似文献   

10.
The thermo-oxidative degradation of a parchment recent manufactured from a goat skin has been investigated by TG/DTG, DSC simultaneous analysis performed in static air atmosphere, at six heating rates in the range 3–15 K min−1. At the progressive heating in air atmosphere, the investigated material exhibits three main successive processes occurring with formation of volatile products, namely the dehydration followed by two thermo-oxidative processes. The processing of the non-isothermal data corresponding to the first process of thermo-oxidation was performed by using Netzsch Thermokinetics—a Software Module for Kinetic Analysis. The dependence of activation energy, evaluated by isoconversional methods suggested by Friedman, and Ozawa, Flynn and Wall, on the conversion degree and the relative high standard deviations of this quantity show that the investigated process is a complex one. The mechanism and the corresponding kinetic parameters were determined by Multivariate Non-linear Regression program. Three mechanisms, one consisting in four successive steps and two others in five successive steps, exhibit the best F-test Fit Quality for TG curves. It was also used the previously suggested criterion, according to which the most probable process mechanism correspond to the best agreement between E FR  = E FR (α) (E FR is the activation energy evaluated by isoconversional method suggested by Friedman; α is the conversion degree) obtained from non-isothermal experimental data and activation energy values, E iso , obtained by applying the differential method to isothermal data simulated using non-isothermal kinetic parameters. According to this last criterion, the most probable mechanism of parchment oxidation consists in four successive steps. The contribution of the thermo-oxidation process in the parchment damage by natural aging is discussed.  相似文献   

11.
A novel thermally stable thermoplastic poly(ester-ether) (PEE) elastomer containing imide units was prepared from poly(tetramethylene glycol) (PTMG1000), 1,4-butanediol (BD) and a new imide dicarboxylic acid based on pyromellitic dianhydride (PMDA) and glycine through a traditional chemical two-step method. The structures of the synthesized imide dicarboxylic acid and novel PEE were confirmed by FT-IR spectroscopy. The mechanical properties of the novel PEE were investigated. Thermal stability and thermal degradation kinetics of the novel PEE were investigated by thermogravimetric analysis (TGA) under different heating rates. The kinetic parameters of the degradation process were determined by using Kissinger, Flynn–Wall–Ozawa and Friedman methods. The Coats–Redfern method was also used to discuss the probable degradation mechanism of this PEE. The results showed that introduction of the imide units into the poly(ester-ether) endowed the PEE with excellent thermal stability and good mechanical properties. The activation energy obtained by using the Kissinger method was in agreement with that using the Flynn–Wall–Ozawa method. The reaction order (n) and pre-exponential factor (A) were obtained by using the Friedman method. Analysis of the experimental results suggests that the decomposition reaction mechanism of the PEE was a F3 type (random nucleation with three nuclei on the individual particle).  相似文献   

12.
The copper(II) oxalate was synthesized, characterized using FT-IR and scanning electron microscopy and its non-isothermal decomposition was studied by differential scanning calorimetric at different heating rates. The kinetics of the thermal decomposition was investigated using different isoconversional and maximum rate (peak) methods viz. Kissinger–Akahira–Sunose (KAS), Tang, Starink1.95, Starink1.92, Flynn–Wall–Ozawa (FWO) and Bosewell. The activation energy values obtained from isoconversional methods of FWO and Bosewell are 0.9 and 3.0 %, respectively, higher than that obtained from other methods. The variation of activation energy, E α with conversion function, α, established using these different methods were found to be similar. Compared to the FWO method, the KAS method offers a significant improvement in the accuracy of the E a values. All but the Bosewell maximum rate (peak) methods yielded consistent values of E α (~137 kJ mol?1); however, the complexity of the thermal decomposition reaction can be identified only through isoconversional methods.  相似文献   

13.

Pyridine-derived platinum(II) complexes with the general formula [PtCl2L2] (L1: 3,5-dimethylpyridine, L2: 2-amino-5-bromopyridine, L3: 4-(4-nitrobenzyl)pyridine) were synthesized. Characterization of the synthesized complexes was made via FT-IR, UV–Vis, 1H-NMR and 13C-NMR techniques. While the thermal behavior of the complexes was investigated via DTA/TG combined system, their kinetic parameters were investigated by using Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) methods. The activation energy of the decomposition kinetics of the complexes was calculated to be 196.5–31.7 kJ mol?1 for FWO and 203.4–29.2 kJ mol?1 for KAS. The cytotoxic effect of the complexes against the colon cancer cell line (DLD-1), which is one of the most common types of cancer observed both in humans and animals, was investigated. The complexes showed high cytotoxicity on DLD-1. In particular, [PtCl2L 12 ] complex was found to be the most effective compounds against colon cancer cell line during the 24 h incubation period. According to these results, the pyridine-derived platinum(II) complexes would contribute to oncologic treatment as chemotherapeutic agents.

  相似文献   

14.
The non-isothermal decomposition of nickel acetate tetrahydrate in air was studied using thermogravimetry (TG)–DTG, differential scanning calorimetry (DSC) and XRD techniques. The decomposition occurs in two major steps and the final product is NiO. The dependence of mass loss on heating rates in TG measurements imply that the dehydration and hydrolysis concur at temperature below 240 °C; the apparent activation energies calculated by Flynn, Wall and Ozawa (FWO) isoconversional method indicate the existence of a consecutive process. The kinetics of the first major decomposition step (below 240 °C) was obtained with multivariate non-linear regression of four measurements at different heating rates. According to the kinetics results from non-linear regression, the dehydration reaction (F1 type with an activation energy E of 167.7 kJ/mol) goes first. After the loss of almost half of water, the retained water and acetate are linked to each other by hydrogen bonding, so dehydration and hydrolysis concur. The pathway with a lower E is related to the hydrolysis process and the other is corresponding to the dehydration process. The simulations of reactants at different heating rates were used to verify the correctness of the reaction model. With the kinetics results, the dehydration mechanism was discussed for the first time.  相似文献   

15.
Polypropylene‐low density polyethylene (PP‐LDPE) blends involving PP‐LDPE (90/10 wt%.) with (0.06 wt%) dialkyl peroxide (DAP) and different amounts (5, 10, 20 wt%) of calcium carbonate (CaCO3) were prepared by melt‐blending with a single‐screw extruder. The effect of addition of CaCO3 on thermal decomposition process and kinetic parameters, such as activation energy and pre‐exponential factor of PP‐LDPE blend with DAP matrix, was studied. The kinetics of the thermal degradation of composites was investigated by thermogravimetric analysis in dynamic nitrogen atmosphere at different heating rates. TG curves showed that the thermal decomposition of composites occurred in one weight‐loss stage. The apparent activation energies of thermal decomposition for composites, as determined by the Tang method (TM), the Kissinger–Akahira–Sunose method (KAS), the Flynn–Wall–Ozawa method (FWO), and the Coats–Redfern (CR) method were 156.6, 156.0, 159.8, and 167.7 kJ.mol?1 for the thermal decomposition of composite with 5 wt% CaCO3, 191.5, 190.8, 193.1, and 196.8 kJ.mol?1 for the thermal decomposition of composite with 10 wt% CaCO3, and 206.3, 206.1, 207.5, and 203.8 kJ mol?1 for the thermal decomposition of composite with 20 wt% CaCO3, respectively. The most likely decomposition process for weight‐loss stages of composites with CaCO3 content 5 and 10 wt% was an An sigmoidal type. However, the most likely decomposition process for composite with CaCO3 content 20 wt% was an Rn contracted geometry shape type in terms of the CR and master plots results. It was also found that the thermal stability, activation energy, and thermal decomposition process were changed with the increase in the CaCO3 filler weight in composite structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
After the surface silylation with 3-methacryloxypropyltrimethoxysilane, silica nanoparticles were further modified by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO). The immobilization of DOPO on silica nanoparticles was confirmed by Fourier transform infrared spectroscopy, UV–visible spectroscopy, magic angle spinning nuclear magnetic resonance, and thermogravimetric analysis. By incorporating the DOPO-immobilized silica nanoparticles (5?wt%) into polypropylene matrix, the thermal oxidative stability exhibited an improvement of 62?°C for the half weight loss temperature, while that was only 26?°C increment with incorporation of virgin silica nanoparticles (5?wt%). Apparent activation energies of the polymer nanocomposites were estimated via Flynn–Wall–Ozawa method. It was found that the incorporation of DOPO-immobilized silica nanoparticles improved activation energies of the degradation reaction. Based on the results, it was speculated that DOPO-immobilized silica nanoparticles could inhibit the degradation of polypropylene and catalyze the formation of carbonaceous char on the surface. Thus, thermal stability was significantly improved.  相似文献   

17.
In the research, thermogravimetry (TG), a combination of thermogravimetry and Fourier transform infrared spectrometer (TG–FTIR) and X-ray diffraction (XRD) were used to investigate pyrolysis characteristics of moso bamboo (Phyllostachys pubescens). The Flynn–Wall–Ozawa and Coats–Redfern (modified) methods were used to determine the apparent activation energy (Ea). The TG curve indicated that the pyrolysis process of moso bamboo included three steps and the main pyrolysis occurred in the second steps with temperature range from 450 K to 650 K and over 68.69% mass was degraded. TG–FTIR analysis showed that the main pyrolysis products included absorbed water (H2O), methane gas (CH4), carbon dioxide (CO2), acids and aldehydes, ammonia gas (NH3), etc. XRD analysis expressed that the index and width crystallinity of moso bamboo gradually increased from 273 K to 538 K and cellulose gradually degraded from amorphous region to crystalline region. The Ea values of moso bamboo increased with conversion rate increase from 10 to 70. The Ea values were, respectively 153.37–198.55 kJ/mol and 152.14–197.87 kJ/mol based on Flynn–Wall–Ozawa and Coats–Redfern (modified) methods. The information was very helpful and significant to design manufacturing process of bio-energy, made from moso bamboo, using gasification or pyrolysis methods.  相似文献   

18.
Three linear isoconversional methods (Friedman, Flynn–Wall–Ozawa, and Kissinger–Akahira–Sunose) and the invariant kinetic parameters (IKP) method were used in order to examine the kinetics of the nonisothermal decomposition of a sodium bicarbonate (NaHCO3). The objective of the paper is to show the usefulness of the IKP method to determine both the kinetic parameters and the kinetic model of the investigated process. The activation energy (Ea) value obtained by the IKP method is in good agreement with the values obtained by isoconversional methods. The IKP method associated with the criterion of coincidence of kinetic parameters for all heating rates led us to the following kinetic triplet: Ea = 95.5 kJ mol?1, A = 2.65 × 1010 min?1, and conversion function f(α) = (1 ? α) (first‐order reaction model, F1). © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 462–471, 2007  相似文献   

19.
The effect of silica content on thermal oxidative stability of styrene–butadiene rubber (SBR)/silica composites has been studied. Morphologies of silica in SBR with different contents are investigated by scanning electron microscopy, which indicates that silica can well disperse in SBR matrix below the content of 40 %, otherwise aggregates or agglomerates will generate. Composites with around 40 % silica content show excellent mechanical properties and retention ratios after aging at 85 °C for 6 days. The values of activation energy (E a) of pure SBR and its composites are calculated by Kissinger and Flynn–Wall–Ozawa methods based on thermogravimetric (TG) results, which suggests that composite with about 20 % silica has minimum E a, and composite with 30–40 % silica has maximum E a. According to TG curves, it is found that silica can suppress the formation of char leading to decline in stability to some extent. On the other side, silica also has positive effect on improving thermal stability of the matrix as filler. Thus, the SBR/silica composites with silica content of 30–40 % can possess both excellent resistance to thermal oxidative degradation and superior mechanical properties.  相似文献   

20.
《印度化学会志》2021,98(6):100077
Thermogravimetric Analysis (TGA) is concluding expanding applicability in determination of the thermal stability and degradation nature of materials. The present study investigates the thermal degradation behavior and the kinetics of degradation of epoxy mixed with varying percentages of 0, 2.5, 5, and 7.5 ​wt% fly ash. Thermal stability and degradation behavior of fly ash modified epoxy cast were determined by thermogravimetric analysis. The kinetic parameters of the EF composites were calculated by using Coats–Redfern, Broido and Horowitz–Metzger models under best-fit analysis and further proved by linear regression analysis. The kinetics of thermal degradation was calculated from data scanned at a heating rate of 10 ​°C/min. The obtained results reveal that kinetic parameters and thermal behavior of EF composites were improved with the reinforcement of fly ash. The cure kinetics of the varying content of fly ash reinforced epoxy cast were also studied by using a nonisothermal differential scanning calorimetric (DSC) technique at four different heating rates 5 ​°C/min, 10 ​°C/min, 15 ​°C/min and 20 ​°C/min. The curing kinetics of the EF composite was derived from the nonisothermal differential scanning calorimetry (DSC) data with the three Kissinger, Ozawa, and Flynn–Wall–Ozawa models, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号