首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Developing optimized hydrogel products requires an in-depth understanding of the mechanisms that drive hydrogel tunability. Here, we performed a full 4 × 4 factorial design study investigating the impact of gellan, a naturally derived polysaccharide (1%, 2%, 3%, or 4% w/v) and CaCl2 concentration (1, 3, 7, or 10 mM) on the viscoelastic, swelling, and drug release behavior of gellan hydrogels containing a model drug, vancomycin. These concentrations were chosen to specifically provide insight into gellan hydrogel behavior for formulations utilizing polymer and salt concentrations expanding beyond those commonly reported by previous studies exploring gellan. With increasing gellan and CaCl2 concentration, the hydrogel storage moduli (0.1–100 kPa) followed a power-law relationship and on average these hydrogels had higher liquid absorption capability and greater total drug release over 6 days. We suggest that the effects of gellan and CaCl2 concentration and their interactions on hydrogel properties can be explained by various phenomena that lead to increased swelling and increased resistance to network expansion.  相似文献   

3.
氧化石墨烯是一种具有单原子厚度的二维材料, 具有优异的力学性能和良好的水分散性, 其表面有大量的含氧官能团. 将氧化石墨烯引入水凝胶体系中可以提高水凝胶的机械性能, 丰富其刺激响应的类型. 目前, 氧化石墨烯水凝胶在高强度、 吸附、 自愈合及智能材料等很多领域均有出色的表现. 氧化石墨烯水凝胶的研究已有10年的历史. 本文总结了氧化石墨烯水凝胶的制备方法, 归纳了智能氧化石墨烯水凝胶在光热响应、 pH响应和自愈合3个方面的响应机理和研究进展, 并综合评述了其在高强度水凝胶、 生物医学、 智能材料和污水处理等方面的应用前景.  相似文献   

4.
Living organisms are capable of dynamically changing their structures for adaptive functions through sophisticated reaction-diffusion processes. Here we show how active supramolecular hydrogels with programmable lifetimes and macroscopic structures can be created by relying on a simple reaction-diffusion strategy. Two hydrogel precursors (poly(acrylic acid) PAA/CaCl2 and Na2CO3) diffuse from different locations and generate amorphous calcium carbonate (ACC) nanoparticles at the diffusional fronts, leading to the formation of hydrogel structures driven by electrostatic interactions between PAA and ACC nanoparticles. Interestingly, the formed hydrogels are capable of autonomously disintegrating over time because of a delayed influx of electrostatic-interaction inhibitors (NaCl). The hydrogel growth process is well explained by a reaction-diffusion model which offers a theoretical means to program the dynamic growth of structured hydrogels. Furthermore, we demonstrate a conceptual access to dynamic information storage in soft materials using the developed reaction-diffusion strategy. This work may serve as a starting point for the development of life-like materials with adaptive structures and functionalities.  相似文献   

5.
Conducting polymer hydrogels consisting of polypyrrole (PPy) and chitosan (CS) are prepared by static polymerization of pyrrole using methyl orange (MO) as the dopant and Fe2(SO4)3 as the oxidant in the CS aqueous solution. PPy/CS composite hydrogels not only have good electrical conductivities, but also exhibit excellent swelling/deswelling behaviors due to the participation of one-dimensional conducting PPy blocks in the hydrogel network. The effects of the amount of the oxidant and ionic strength on the physical properties of PPy/CS composite hydrogels are studied in detail. The results show that PPy/CS composite hydrogels have improved water absorbencies in saline solutions compared with the conventional polyelectrolyte hydrogel.  相似文献   

6.
《化学:亚洲杂志》2018,13(15):1962-1971
Recently, supramolecular hydrogels have attracted increasing interest owing to their tunable stability and inherent biocompatibility. However, only few studies have been reported in the literature on self‐healing supramolecular nucleoside hydrogels, compared to self‐healing polymer hydrogels. In this work, we successfully developed a self‐healing supramolecular nucleoside hydrogel obtained by simply mixing equimolar amounts of guanosine (G) and isoguanosine (isoG) in the presence of K+. The gelation properties have been studied systematically by comparing different alkali metal ions as well as mixtures with different ratios of G and isoG. To this end, rheological and phase diagram experiments demonstrated that the co‐gel not only possessed good self‐healing properties and short recovery time (only 20 seconds) but also could be formed at very low concentrations of K+. Furthermore, nuclear magnetic resonance (NMR), powder X‐ray diffraction (PXRD), and circular dichroism (CD) spectroscopy suggested that possible G2isoG2‐quartet structures occurred in this self‐healing supramolecular nucleoside hydrogel. This co‐gel, to some extent, addressed the problem of isoguanosine gels for the applications in vivo, which showed the potential to be a new type of drug delivery system for biomedical applications in the future.  相似文献   

7.
The ability to create artificial thick tissues is a major tissue engineering problem,requiring the formation of a suitable vascular supply.In this work we examined the ability of inducing angiogenesis in a bioactive hydrogel.GYIGSRG(NH 2-Gly-Tyr-IleGly-Ser-Arg-Gly-COOH,GG) has been conjugated to sodium alginate(ALG) to synthesize a biological active biomaterial ALG-GG.The product was characterized by 1 H NMR,FT-IR and elemental analysis.A series of CaCO 3 /ALG-GG composite hydrogels were prepared by crosslinking ALG-GG with D-glucono-lactone/calcium carbonate(GDL/CaCO 3) in different molar ratios.The mechanical strength and swelling ratio of the composite hydrogels were studied.The results revealed that both of them can be regulated under different preparation conditions.Then,CaCO 3 /ALG-GG composite hydrogel was implanted in vivo to study the ability to induce angiogenesis.The results demonstrated that ALG-GG composited hydrogel can induce angiogenesis significantly compared with non-modified ALG group,and it may be valuable in the development of thick tissue engineering scaffold.  相似文献   

8.
This study focuses on the preparation of stretchable zwitterionic poly(sulfobetaine methacrylate) (PSBMA) hydrogels. To address the weak mechanical properties of chemically crosslinked PSBMA hydrogels, a physical crosslinking method utilizing hydrophobic interactions to crosslink hydrogels to approach tough properties is developed. Here, sodium dodecyl sulfate (SDS)-based micelle is used as a physical crosslinker to prepare physically crosslinked PSBMA (PSBMAphy) hydrogels, and ethylene glycol dimethylacrylate (EGDMA) is used to prepare a control group of chemically crosslinked PSBMA (PSBMAchem) hydrogels. The mechanical properties of the two hydrogels are compared, and PSBMAphy hydrogels exhibit greater flexibility than the PSBMAchem hydrogels. When the PSBMAphy hydrogels are subjected to external forces, the micelles act as dynamic crosslinking sites, allowing the stress to disperse and prevent the hydrogel from breaking. In addition, the PSBMAphy hydrogels have nearly 100% self-healing properties within 2.5 min. The PSBMAphy hydrogels exhibit usable adhesive properties to porcine skin and subcutis. MTT and hemolysis tests show that the PSBMAphy hydrogels have excellent biocompatibility and hemocompatibility. This study proposes that the multifunctional PSBMAphy hydrogels with micelles will be potential to carry drugs for use in drug delivery systems in the future.  相似文献   

9.
Chen  Gong  Han  Tingting  Xiang  Zhouyang  Song  Tao 《Cellulose (London, England)》2022,29(10):5833-5851

The size of silver nanoparticles (AgNPs) is the key factor that governs their antibacterial activity. However, the size of AgNPs is difficult to control because agglomeration and uneven dispersion often occur during the processing of AgNP-based products, which has impeded their applications in different areas. In this work, an efficient strategy was developed to overcome this difficulty and to prepare an antibacterial hydrogel comprising AgNPs and chitosan (CS) with dialdehyde xylan (DAX) as the crosslinking agent. The size of AgNPs was controlled successfully to an extremely fine level (<?9 nm) by reducing AgNO3 solution in a methanolic suspension of the metal organic framework (MOF) -UiO-66-NH2, and forming an Ag@UiO-66-NH2 core–shell structure which avoided the agglomeration of AgNPs. DAX played a dual role by forming a hydrogel structure with CS through crosslinking, but also by stabilizing the even dispersion of Ag@UiO-66-NH2 in the hydrogel. Accordingly, the as-prepared hydrogels showed excellent antibacterial properties and low cytotoxicity. The survival ratio of NIH/3T3 cells cultured in the hydrogel extract was more than 90%, even when the concentration of the hydrogel extract was as high as 10 mg/mL. In addition, the hydrogel exhibited good abilities of water absorption (swelling ratio was up to 1100%) and self-healing (efficiency was up to 88% after 5 h). The hydrogels with size-well-controlled AgNPs prepared in this work are expected to find broad applications, especially in the area of antibacterial medical auxiliaries.

  相似文献   

10.
A double hydrogen bonding (DHB) hydrogel is constructed by copolymerization of 2‐vinyl‐4,6‐diamino‐1,3,5‐triazine (hydrophobic hydrogen bonding monomer) and N,N‐dimethylacrylamide (hydrophilic hydrogen bonding monomer) with polyethylene glycol diacrylates. The DHB hydrogels demonstrate tunable robust mechanical properties by varying the ratio of hydrogen bonding monomer or crosslinker. Importantly, because of synergistic energy dissipating mechanism of strong diaminotriazine (DAT) hydrogen bonding and weak amide hydrogen bonding, the DHB hydrogels exhibit high toughness (up to 2.32 kJ m−2), meanwhile maintaining 0.7 MPa tensile strength, 130% elongation at break, and 8.3 MPa compressive strength. Moreover, rehydration can help to recover the mechanical properties of the cyclic loaded–unloaded gels. Attractively, the DHB hydrogels are responsive to CO2 in water, and demonstrate unprecedented CO2‐triggered shape memory behavior owing to the reversible destruction and reconstruction of DAT hydrogen bonding upon passing and degassing CO2 without introducing external acid. The CO2 triggering mechanism may point out a new approach to fabricate shape memory hydrogels.  相似文献   

11.

Composite hydrogels based on polyacrylamide immobilized nanoparticles of commercial (P25 brand) titanium dioxide and of titanium dioxide nanoparticles prepared by electric explosion of a wire were synthesized. The enthalpy of interaction at the polyacrylamide/TiO2 interface was determined by microcalorimetry using the thermochemical cycle method. Interaction of polyacrylamide polymer chains with the surface of TiO2 nanoparticles is energetically unfavorable. The absence of interactions between the hydrogel polymer network and surface of TiO2 nanoparticles favors manifestation of the UV-induced photocatalytic activity of TiO2 nanoparticles immobilized in the hydrogel. Immobilization in the polyacrylamide hydrogel matrix decreases the photocatalytic activity of P25 brand TiO2 nanoparticles, but does not affect the photocatalytic activity of titanium dioxide nanoparticles prepared by the electric explosion method. The photocatalytic activity of TiO2 nanoparticles immobilized in the bulk of polyacrylamide hydrogel evaluated by the decomposition of Methyl Orange dye is controlled by the diffusion rate of the dye molecules into the bulk of the hydrogel and depends also on the aggregation of TiO2 nanoparticles in the hydrogel matrix.

  相似文献   

12.
Cell‐based therapies have great potential to regenerate and repair injured articular cartilage, and a range of synthetic and natural polymer‐based hydrogels have been used in combination with stem cells and growth factors for this purpose. Although the hydrogel scaffolds developed to date possess many favorable characteristics, achieving the required mechanical properties has remained a challenge. A hydrogel system with tunable mechanical properties, composed of a mixture of natural and synthetic polymers, and its use for the encapsulation of adipose derived stem/stromal cells (ASCs) is described. Solutions of methacrylated chondroitin sulfate (MCS) are mixed with solutions of acrylate‐poly(trimethylene carbonate)‐b‐poly(ethylene glycol)‐b‐poly(trimethylene carbonate)‐acrylate (PEG‐(PTMC‐A)2) in phosphate buffered saline and crosslinked via thermally initiated free radical polymerization. The hydrogel compressive equilibrium moduli and toughness are readily tailored by varying the concentration of the pre‐polymers, as well as the molecular weight of the PEG used to prepare the PEG‐(PTMC‐A)2. Two peptide sequences, GVOGEA and GGGGRGDS, are individually conjugated to the MCS to facilitate cell binding. The presence of the peptide ligands yields high ASC viability and long term metabolic activity following encapsulation in hydrogels prepared using the thermal initiator system. Overall, these hydrogels show promise as a minimally invasive ASC delivery strategy for chondral defect repair.

  相似文献   


13.
Data on reactivities of α- and γ-Al2O3 finely dispersed powders in a melted carbonate eutectic (Li2CO3–Na2CO3–K2CO3)eut and carbonate-chloride mixture 0.72(Li2CO3–Na2CO3–K2CO3)eut–0.28NaCl were obtained. The methods of synchronous thermal and X-ray phase analyses and Raman spectroscopy confirmed that, in contrast to γ-Al2O3, α-Al2O3 does not chemically interact with the melted carbonate eutectic and carbonate-chloride mixture (Li2CO3–Na2CO3–K2CO3)eut–NaCl can be recommended as a thickening agent for a carbonate fuel cell.  相似文献   

14.
Polyionic liquid hydrogels attract increasing attention due to their unique properties and potential applications. However, research on amino acid-based polyionic liquid hydrogels is still in its infancy stage. Moreover, the effect of amino acid types on the properties of hydrogels is rarely studied to date. In this work, amino acid-based polyionic liquid hydrogels (D/L-PCAA hydrogels) are synthesized by copolymerizing vinyl choline–amino acid ionic liquids and acrylic acids using Al3+ as a crosslinking agent and bacterial cellulose (BC) as a reinforcing agent. The effects of amino acid types on mechanical and antimicrobial properties are systematically investigated. D-arginine-based hydrogel (D-PCArg) shows the highest tensile strength (220.7 KPa), D-phenylalanine-based hydrogel (D-PCPhe) exhibits the highest elongation at break (1346%), and L-aspartic acid-based hydrogel (L-PCAsp) has the highest elastic modulus (206.9 KPa) and toughness (1.74 MJ m−3). D/L-PCAsp hydrogels demonstrate stronger antibacterial capacity against Escherichia coli and Staphylococcus aureus, and D/L-PCPhe hydrogels possess higher antifungal activity against Cryptococcus neoformans. Moreover, the resultant hydrogels exhibit prominent hemocompatibility and low toxicity, as well as excellent self-healing capabilities (86%) and conductivity (2.8 S m−1). These results indicate that D/L-PCAA hydrogel provides a promise for applications in wound dressings.  相似文献   

15.
A composite hydrogel based on, by introducing, polyvinyl alcohol, sodium alginate, and hyaluronic acid was fabricated using CaCl2 as a cross-linker. The physical properties including morphology, water vapor transmission rate, and hydrophilicity were investigated. All PVA/SA/HA composite hydrogels with different compositions had highly homogeneous and interconnected pores, and the morphologies of the PVA/SA/HA hydrogels ranged from fibrous structure to irregular structure with increasing content of SA. The introduction of sodium alginate enhanced the hydrophilicity and water vapor transmission capacity of the hydrogel; however, the hydrophilicity of the composite hydrogels decreased with the increasing cross-linker content.  相似文献   

16.
The design of wound dressings with excellent self-healing ability, adequate adhesion, good biocompatibility, and potential antibacterial ability is of great significance for the healing of infected wounds arising from human activities. Herein, a series of multi-functional hydrogel dressings, poly(ionized isocyanoethyl methacrylate-glutamine)/poly(hexamethylene guanidine) (iGx/PHMGy) hydrogels, were obtained through homopolymerization of fully ionized isocyanoethyl methacrylate-glutamine (iIEM-Gln) in the presence of poly(hexamethylene guanidine) (PHMG), in which strong hydrogen bonds were formed among urea groups in the P (iIEM-Gln) chain to form a stable hydrogel network. The prepared iGx/PHMGy hydrogels exhibited adequate self-healing ability and tissue adhesion, which could be firmly adhered to the wound surface and remained intact during application. In addition, the presence of PHMG imparted good antibacterial activity to the hydrogels for the effective promotion of the wound healing in S. aureus infected skin wound on mice. Overall, this multi-functional hydrogel provides a facile and effective strategy for the design of infected wound dressings, and may show great potential in clinical applications.  相似文献   

17.
In this study, interpenetrating polymer network (IPN) hydrogel systems including maleic acid (MA) were constituted to improve the solubility of phosphate fertilizers. A series of full and semi-IPN hydrogels were prepared from various gelatin/polyacrylamide mixtures by using two different cross-linkers. The effects of polymer composition on the morphological structures and swelling behaviors of the hydrogels were investigated. The swelling values of all hydrogels were found to be in between 435% and 830%. MA release from load0ed hydrogels was followed and it was determined that MA-loaded hydrogels efficiently decreased pH and improved the solubility of Ca3(PO4)2 in releasing medium.  相似文献   

18.
Various strategies are being pursued to confer the highly specific molecular recognition properties of bioactive molecules to the transducer action of inherently conductive polymers. We have successfully integrated inherently conductive polypyrrole within electrode-supported, UV cross-linked hydroxyethyl methacrylate (HEMA)-based hydrogels. These electroactive composites were used as matrixes for the physical immobilization of several oxidase enzymes to fabricate clinically important biosensors. Measurements were made of the amperometric responses via H2O2 oxidation for each biosensor. Apparent Michaelis constants, Km(app), for glucose oxidase immobilized in p(HEMA) membranes and in p(HEMA)/p(Pyrrole) composite membranes were 13.8 and 43.7 mM respectively compared to 33 mM in solution. The inclusion of polypyrrole in the hydrogel network increased the thermal stability of the immobilized enzyme at 60°C by 30% and 40% compared to p(HEMA) membranes and solution phase respectively. The composite also yielded larger Imax values (19 μA/cm−2) for glucose biosensors compared to similar glucose biosensors fabricated without the conducting polymer (15 μA). Km(app) values for cholesterol oxidase immobilized in the same composite films were ca. three orders of magnitude higher than the Km for the soluble enzyme. The polypyrrole component is shown to reduce diffusive transport but to confer thermal stability to these biosensors.  相似文献   

19.
An amphiphilic interpenetrating polymer network hydrogel was designed and synthesized using click chemistry and ferric ion coordination. The first polymer network was formed through the reaction of azide‐modified PEG (N3‐PEGn‐N3) and alkynyl‐pendant linear PPG derivatives ((PPGm(C≡CH))n) through click chemistry and mixed with poly(ethylene glycol‐dopamine) macromolecules. The second polymer network was formed through ferric ion coordination with poly(ethylene glycol‐dopamine). Interpenetrating polymer networks give the hydrogel unique amphiphilic properties and higher mechanical strength and thermal stability. Swelling ratio and degradation rate could be adjusted by controlling the ratio of poly(ethylene glycol‐dopamine) in the hydrogel network. Given that in vivo subcutaneous implantation revealed no infection and no obvious abnormalities, the hydrogel exhibits high biocompatibility. The feature indicates that these hydrogels have a promising application in the field of biomaterials and tissue engineering. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A series of M/MgO (M?=?CaO, KNO3, KOH, K2CO3) catalysts were prepared by a dry impregnation method and used for synthesis of glycerol carbonate from glycerol and dimethyl carbonate. It was found that K2CO3/MgO was the most efficient catalyst, with a glycerol carbonate yield of approximately 99% under the conditions: DMC/glycerol molar ratio 2.5:1, catalyst/raw material weight ratio 1%, reaction time 2?h, and reaction temperature 80?°C. FTIR, BET, TEM, and XRD were used for characterization of the catalyst and showed that the active sites seemed to be K2O formed on the K2CO3/MgO catalyst. Finally, a recycling experiment showed that the catalyst was relatively stable and could be reused up to four times, at least, by regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号