首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ultrasonics》2005,43(2):87-93
Surface Brillouin spectroscopy (SBS) has been widely used for elastic property characterization of thin films. For films thicker than 500 nm, however, the wavelength of surface acoustic wave in the frequency range available for SBS is smaller than film thickness, and the SBS measures only the Rayleigh wave of the film. The laser-SAW technique, on the other hand, measures only the low-frequency portion of the surface acoustic wave dispersion and can estimate only one elastic modulus of the film (typically Young's modulus). In this work, we have combined the two methods to determine both Young's modulus and Poisson's ratio of a diamond-like carbon (DLC) film. It was found that reasonable estimates can be obtained for the longitudinal wave velocity, shear wave velocity, and Young's modulus of the film. The Poisson's ratio, however, still has a relatively large measurement error.  相似文献   

2.
硅纳米线因受量子尺寸效应与表面效应的影响而具有奇特的力、电及其耦合特性,成为了纳米电子器件的核心构件.然而在硅纳米线的制备过程中,表面产生缺陷不可避免.因此本文采用分子动力学方法着重研究了表面缺陷浓度对不同横截面形状(正方形、六角形和三角形)的[110]晶向和[111]晶向硅纳米线杨氏模量的影响.研究结果表明,当硅纳米线仅有单一表面缺陷时,不同晶向硅纳米线的杨氏模量均随表面缺陷浓度增加而迅速单调减小.当表面缺陷浓度为10%时,杨氏模量的减小幅度在10%-20%之间,减小幅度的差异与硅纳米线的晶向以及横截面形状密切相关.当存在多个表面缺陷时,杨氏模量随着缺陷浓度的增加表现出了不同程度的波动趋势.三角形截面硅纳米线的杨氏模量波动幅度最大,正方形截面的波动较小,即表面缺陷分布的不同对正方形截面硅纳米线的杨氏模量影响较小,这表明表面缺陷的影响与其分布及硅纳米线的横截面形状密切相关.通过与实验结果对比,本文的研究结果揭示了表面缺陷是导致硅纳米线杨氏模量实验值变小的重要因素,因此在表征硅纳米线的力学性能时,需要考虑表面缺陷的影响.  相似文献   

3.
This paper presents an approach to reverse analysis in depth-sensing indentation of composite film/substrate materials, which makes use of numerical simulation. This methodology allows the results of experimental hardness tests, acquired with pyramidal indenter geometry, to be used to determine the Young's modulus of thin film materials. Forward and reverse analyses were performing using three-dimensional numerical simulations of pyramidal and flat punch indentation tests to determine the Young's modulus of the thin films. The pyramidal indenter used in the numerical simulations takes into account the presence of the most common imperfection of the tip, so-called offset. The contact friction between the Vickers indenter and the deformable body is also considered. The forward analysis uses fictitious composite materials with different relationships between the values of the Young's modulus of the film and substrate. The proposed reverse analysis procedure provides a unique value for the film's Young's modulus. Depending on material properties, the value of the Young's modulus of the film can be more or less sensitive to the scatter of the experimental results obtained using the depth-sensing equipment. The validity of the proposed reverse analysis method is checked using four real cases of composite materials.  相似文献   

4.
Some phyllosilicate compounds have the ability of spontaneous scrolling because of the size mismatch between the covalently bounded metal oxide and silica sheets. Their unique structure and high theoretically predicted Young's modulus (around 210–230 GPa) induce phyllosilicates’ application as reinforcing fillers. However, previous nanomechanical experiments with individual phyllosilicate nanoscrolls are in poor agreement with theory. The main reason for this is the low accuracy of experiments, which leads to large measurement errors compared to measured average values. Here, the study of the mechanical properties of synthetic (Mg1–xNix)3Si2O5(OH)4 phyllosilicates is reported by testing a suspended nanoobject (a nanobridge) with an atomic force microscope (AFM). The Young's modulus of corresponding phyllosilicate model layers is also calculated by means of the density functional theory (DFT). The original AFM approach makes it possible to account for the probe slipping off the nanobridge and determine its boundary conditions. The measured Young's modulus values are considered within the models of surface tension and shear strain contributions. The shear strain appears to have a decisive impact on the measured Young's modulus (from 150 ± 70 GPa to 200 ± 210 GPa) and its spread.  相似文献   

5.
In this Letter, we demonstrate for the first time (to our best knowledge) stamp printing of silicon nanomembrane (SiNM)-based in-plane photonic devices onto a flexible substrate using a modified transfer printing method that utilizes a suspended configuration, which can adjust the adhesion between the released SiNM and the "handle" silicon wafer. With this method, 230 nm thick, 30 μm wide, and up to 5.7 cm long SiNM-based waveguides are transferred to flexible Kapton films with >90% transfer yield. The propagation loss of the transferred waveguides is measured to be ~1.1 dB/cm. Scalability of this approach to transfer intricate structures, such as photonic crystal waveguides and multimode interference couplers with a minimum feature size of 200 nm and 2 μm, respectively, is also demonstrated.  相似文献   

6.
Nanoscale fracture and strain-induced structure variation of ZnO nanocones are determined using in situ transmission electron microscopy compression experiments. For the single-crystalline nanocones with diameters of 100–300 nm, the Young's modulus is in the range of 7.7–48 GPa and the ultimate tensile strength is in the range of 2.4–4.3%. The Young's modulus and tensile strength increase with decreasing diameter. Here, we report the nanogenerator of ZnO nanocones can be used mechanical energy to output 90 nW/mm2.  相似文献   

7.
Gallium nanoparticles (Ga NPs) are attracting increasing attention because of their appealing physical-chemical properties. In particular, their mechanical properties play a key role in the implementation of these core-shell structures on certain applications, such as soft and stretchable electronics. Thus, efforts are being addressed to modulate them mainly by chemical means. In contrast, this study investigates how the mechanical properties of the outer gallium thin oxide shell change when its thickness is increased through a thermal oxidation strategy. Specifically, as-deposited Ga NPs, as well as those subjected to thermal oxidation at 300 °C for three different times, are studied by performing single-particle indentations by atomic force microscopy over a wide range of NP radius. This analysis helps to confirm that the Reissner's thin-shell model for small deformations within the elastic regime is obeyed. From these data, the dependence of the shell stiffness and the Young's modulus of the gallium oxide on the thermal treatment is obtained. It is found that the shell stiffness increases with the annealing time, even by a factor of 50 under prolonged thermal oxidation, while the gallium oxide Young's modulus, close to 30 GPa, does not change significantly.  相似文献   

8.
The self-consistent charge density functional based tight-binding method is used to calculate the effect of curvature on the structure, average energy of atoms and Young's modulus of armchair single-wall carbon nanotubes (SWCNTs) under axial strains. We found that as the amount of curvature increases, the average energy of atoms and the Young's modulus decrease and the equilibrium CC distance increases for (7,7) SWCNTs. However, we also found that the average energy of atoms and Young's modulus of (5,5) SWCNTs are weakly affected by increasing the amount of curvature. Our results also show that the average energy of atoms and Young's modulus of smaller diameter armchair nanotubes are smaller than that of the larger diameter ones.  相似文献   

9.
石墨烯力学性能的研究对其在半导体技术中的应用是十分重要的,本文基于半连续体模型并结合石墨烯纳米结构特性,通过对原子的描述构建了石墨烯形变分量和位移分量的新关系,从而给出了单层石墨烯结构形变能,并计算了不同尺寸单层石墨烯的杨氏模量值.通过对不同方向杨氏模量的分析,讨论了单层石墨烯的手性行为.结果表明:随着尺寸的增加,单层石墨烯两个方向的杨氏模量分别趋于0.746 TPa和0.743 TPa,当尺寸相同时,两方向杨氏模量的最大差值不超过0.003 TPa,此结果与文献报道结果相符.在小应变情况下,单层石墨烯薄膜呈各向同性,且薄膜尺寸变化对该特性影响不大.该计算结果对研究石墨烯的其它力学特性提供一定的参考价值.  相似文献   

10.
The Stillinger–Weber potential is used to study the composition-dependent Young's modulus for Ge-core/Si-shell and Si-core/Ge-shell nanowires. Here, the composition is defined as a ratio of the number of atoms of the core to the number of atoms of a core–shell nanowire. For each concerned Ge-core/Si-shell nanowire with a specified diameter, we find that its Young's modulus increases to a maximal value and then decreases as the composition increases. Whereas Young's modulus of the Si-core/Ge-shell nanowires increase nonlinearly in a wide compositional range. Our calculations reveal that these observed trends of Young's modulus of core–shell nanowires are essentially attributed to the different components of the cores and the shells, as well as the different strains in the interfaces between the cores and the shells.  相似文献   

11.
Using the first-principles calculations based on the density functional theory (DFT), we have investigated the mechanical properties of three typical patterns of the highly hydrogenated SWCNTs. For the stable parallel polyacetylene-like chains pattern (pattern III), Young's modulus of the type A configuration, which is one of the stable configurations of pattern III, has larger Young's modulus than that of the others with the same coverage on the same pristine tube, i.e. the vertical chain pattern (pattern I) and the dimer pattern (pattern II) ones. On the other hand, Young's modulus of type B configuration also belonged to pattern III changes slightly. We also verified that Young's modulus decreases enormously as the coverage increases above 50% and reduces to about one-third of that of the pristine carbon nanotubes at 100% coverage.  相似文献   

12.
In order to obtain a deeper understanding of the human phonation process and the mechanisms generating sound, realistic setups are built up containing artificial vocal folds. Usually, these vocal folds consist of viscoelastic materials (e.g., polyurethane mixtures). Reliable simulation based studies on the setups require the mechanical properties of the utilized viscoelastic materials. The aim of this work is the identification of mechanical material parameters (Young's modulus, Poisson's ratio, and loss factor) for those materials. Therefore, we suggest a low-cost measurement setup, the so-called vibration transmission analyzer (VTA) enabling to analyze the transfer behavior of viscoelastic materials for propagating mechanical waves. With the aid of a mathematical Inverse Method, the material parameters are adjusted in a convenient way so that the simulation results coincide with the measurement results for the transfer behavior. Contrary to other works, we determine frequency dependent functions for the mechanical properties characterizing the viscoelastic material in the frequency range of human speech (100–250 Hz). The results for three different materials clearly show that the Poisson's ratio is close to 0.5 and that the Young's modulus increases with higher frequencies. For a frequency of 400 Hz, the Young's modulus of the investigated viscoelastic materials is approximately 80% higher than for the static case (0 Hz). We verify the identified mechanical properties with experiments on fabricated vocal fold models. Thereby, only small deviations between measurements and simulations occur.  相似文献   

13.
M. Lucas  W. J. Mai  R. S. Yang  Z. L Wang  E. Riedo 《哲学杂志》2013,93(14-15):2135-2141
The Young's modulus of ZnO nanobelts was measured using an atomic force microscope following the modulated nanoindentation method. The nanobelts have a rectangular cross-section, with width-to-thickness ratios ranging 1–10 and lengths up to a few millimetres. The Young's modulus of two nanobelts with width-to-thickness ratio of 2.2 and 1.3 was measured at 55 and 108?GPa, respectively, indicating a size dependence of the elastic properties of the nanobelts.  相似文献   

14.
In the open literature, reports of mechanical properties are limited for semiconducting thermoelectric materials, including the temperature dependence of elastic moduli. In this study, for both cast ingots and hot-pressed billets of Ag-, Sb-, Sn- and S-doped PbTe thermoelectric materials, resonant ultrasound spectroscopy (RUS) was utilized to determine the temperature dependence of elastic moduli, including Young's modulus, shear modulus and Poisson's ratio. This study is the first to determine the temperature-dependent elastic moduli for these PbTe-based thermoelectrics, and among the few determinations of elasticity of any thermoelectric material for temperatures above 300 K. The Young's modulus and Poisson's ratio, measured from room temperature to 773 K during heating and cooling, agreed well. Also, the observed Young's modulus, E, versus temperature, T, relationship, E(T) = E 0(1–bT), is consistent with predictions for materials in the range well above the Debye temperature. A nanoindentation study of Young's modulus on the specimen faces showed that both the cast and hot-pressed specimens were approximately elastically isotropic.  相似文献   

15.
In this work, we investigate the effect of temperature, defect, and strain rate on the mechanical properties of multi-layer graphene using coarse-grained molecular dynamics (CGMD) simulations. The simulation results reveal that the mechanical properties of multi-layer graphene tend to be less sensitive to temperature as the layer increases, but they are sensitive to the distribution and coverage of Stone-Wales (SW) defects. For the same number of defect, there is less decline in the fracture stress and Young's modulus of graphene when the defects have a regular distribution, in contrast to random distribution. In addition, Young's modulus is less influenced by temperature and defect, compared to fracture stress. Both the fracture stress and Young's modulus have little dependence on strain rate.  相似文献   

16.
Analysis of the bending modulus of individual silicon nitride nanobelts in elastic regime is reported here. The nanobelts have the size between 200∼800 nm in width, and thickness 20∼50 nm. Atomic force microscopy was used to image and to perform measurements of force versus bending displacement on individual nanobelts suspending over strips. The bending modulus Eb is deduced by comparison of the measured force curves on the substrate and on the suspending nanobelts. It is shown that the elastic modulus of the silicon nitride nanobelts is about 570 GPa, which is much larger than that of bulk and film of the silicon nitride material. The larger elastic modulus is ascribed to the fact there are less structural defects in the silicon nitride nanobelts. PACS 81.70.Bt; 81.40.Lm; 61.80.+g  相似文献   

17.
Electronic structure and mechanical properties of cubic crystallographic structures with point defects in Al-based alloys are investigated using the first-principles calculations. Equilibrium structural parameters and mechanical parameters such as bulk modulus, shear modulus, Young's modulus, Poisson's ratio and anisotropy are calculated and agreed well with experimental values. Effects of point defects on the electronic structures and mechanical properties of such cubic phases are further analyzed and discussed in view of the charge density and the density of states.  相似文献   

18.
The hardness and Young's modulus of 10 and 20 nm gold nanoparticles (Au NPs) modified with bovine serum albumin and streptavidin were measured using a nanoindenter. The Au NPs were immobilized on a semiconductor surface through organic self-assembled monolayers. Changes in mechanical properties occurred when the Au NPs were immobilized on the surface. The hardness and Young's modulus were dependent on the size of the NPs, and the proteins on the particles showed highly plastic and elastic behavior compared to flat surfaces modified with self-assembled monolayers.  相似文献   

19.
H. M. Yin 《哲学杂志》2013,93(28):4367-4395
Coupled magnetoelastic behaviour is investigated for two-phase composites containing randomly dispersed ferromagnetic particles under both magnetic and mechanical loading. The pair-wise particle interactions for magnetic field and elastic field are first defined by the solution for two particles embedded in the infinite domain, which is explicitly solved by the Green's function technique. By integrating the interactions from all other particles in the representative volume element, the homogenized magnetic and elastic fields are then obtained. Effective magnetostriction due to the magnetic interaction force is further derived. Without consideration of magnetic loading, this micromechanical model provides an effective elasticity with the pair-wise particle interactions. By dropping the interaction term, this model is reduced into Mori–Tanaka's model. Finally, magnetoelasticity is numerically solved by considering the magnetomechanical coupling effect. It is predicted that the effective Young's modulus and shear modulus decrease along with the increase of magnetic loading for random composites.  相似文献   

20.
Nanoindentation was carried out on thin films of hydrogenated amorphous silicon (a-Si:H) prepared by plasma-enhanced chemical vapor deposition. The composite values of elastic (Young's) modulus, E c, and hardness, H c, of the film/substrate system were evaluated from the load–displacement curves using the Oliver–Pharr approach. The film-only parameters were obtained employing the extrapolation of the depth profiles of E c and H c. Scanning probe microscopy was employed to image the nanoindenter impressions and to estimate the effect of film roughness and material pile-up on the testing results. It was established that the elastic modulus of thin a-Si:H films is in the range 117–131 GPa, which is lower than for crystalline silicon. In contrast, the values of hardness are in the range 12.2–12.7 GPa, which is comparable to crystalline silicon and higher than for hydrogen-free amorphous silicon. It is suggested that the plastic deformation of a-Si:H proceeds through plastic flow and it is the presence of hydrogen in the amorphous matrix that leads to a higher hardness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号