首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of compounding procedure on morphology and crystallization behavior of isotactic polypropylene/high‐density polyethylene/carbon black (iPP/HDPE/CB) composite was investigated. iPP/HDPE/CB composites were prepared by four compounding procedures (A: iPP + HDPE + CB; B: iPP/HDPE + CB; C: HDPE/CB + iPP; D: iPP/CB + HDPE). Scanning electron microscopy observation showed that CB particles are mainly distributed in HDPE in all composites, and the phase morphology of composites was obviously affected by a compounding procedure. The size of the HDPE/CB domains in the composites prepared by procedures A and D decreased with the increase in CB content, whereas that of HDPE/CB in the composites prepared by procedures B and C rarely changed with the increase in CB content. The crystallization behaviors of the composites were significantly affected by their phase morphology, which resulted from the variation of compounding procedure. The isothermal crystallization rate of iPP in the composites prepared by procedures A and D was obviously increased, which may originate from the small HDPE/CB droplets dispersed in the iPP phase. The non‐isothermal crystallization curves of composites prepared by procedure D represented two peaks because the iPP component in these composites had the fastest crystallization rate, whereas the curves of composites prepared by other compounding sequences only exhibited one peak. Moreover, the crystallinity of HDPE almost increased by one time with the incorporation of only 1 phr CB because the CB particles selectively located in the HDPE phase, and the crystallinity of HDPE decreased with the further increase of CB content because of the strong restriction of CB on the HDPE chains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Isotactic polypropylene (iPP) was crystallized from solution on a uniaxially-oriented iPP film. Small-angle x-ray scattering patterns obtained from the sample showed two perpendicularly crossed lameliae 9.3 nm thick that overgrew flat-on and edge-on on the substrate. In the through wide-angel x-ray diffraction pattern (taken with incident x-rays normal to the iPP film surface), strong hkO reflections were arranged in an hkO net pattern indicating that the a-axis of the monoclinic α unit cell was oriented parallel to the chain direction of the substrate. From this, it was concluded that the flat-on lamellae grew with the a-axis parallel to the chain axis of the substrate and with the b-axis parallel to its surface. In the edge wide-angle x-ray diffraction pattern (X-rays incident on the edge of the film), arced, strong 110 and 220 reflections from overgrown crystals were observed on the equator of the fiber pattern of the substrate. This indicated that the edge-on lamellae epitaxially grew with the c-axis aligned parallel to the chain axis of the substrate. The homoepitaxy explains the correlated growth mode between the orthogonally crossed lamellae: they grew epitaxially, the a-axis of one lamella coinciding with the c-axis of the other and the {010} planes in contact. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
We used inelastic neutron scattering to probe the low‐energy excitations in semicrystalline isotactic polypropylenes with different degrees of crystallinity. The contributions from the amorphous and crystalline regions to the total scattering intensity were extracted under the assumption of a weighted linear contribution of the two regions in a simplified two‐phase system. The resulting intensity from the amorphous region showed a peak at 1.2 meV that was in good agreement with the previously determined boson peak characteristic of atactic polypropylene. The possibility of a contribution to the boson peak region by longitudinal acoustic mode modes that are characteristic of semicrystalline polymers and appear in the same low‐frequency region is discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2852–2859, 2001  相似文献   

4.
The melting behavior of spherulites in thin sections of isotactic polypropylene bulk samples and high-density polyethylene thin films crystallized isothermally at various temperatures has been studied by polarized light microscopy. The regions around cavities and multiple boundary points between spherulites have higher melting temperatures than the other parts of spherulites crystallized in Regime III. The increase in melting temperature is explained as a result of crystallization under negative pressure arising locally in pockets of occluded melt due to density change during spherulitic crystallization. The negative pressure lowers locally the equilibrium melting temperature and therefore decreases the undercooling, which results in an increase in lamellar thickness. Sectioning of bulk samples releases frozen negative pressure and reveals the increase in melting temperature of those parts of spherulites that were crystallized at lower undercooling. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Isotactic polypropylene block copolymers, isotactic-polypropylene-block-poly (methyl methacrylate) (i-PP-b-PMMA) and isotactic-polypropylene-block-polystyrene (i-PP-b-PS), were prepared by atom transfer radical polymerization (ATRP) using a brominated styrene-terminated isotactic polypropylene macroinitiator synthesized from bromination of styrene-terminated isotactic polypropylene. The styrene-terminated isotactic polypropylene can be obtained by polymerization of propylene in the presence of styrene and hydrogen chain transfer agents using a rac-Me2Si[2-methyl-4-(1-naphyl)Ind]2ZrCl2 as catalyst. The molecular weights of isotactic polypropylene block copolymers were controlled by altering the amount of hydrogen used in the polymerization of propylene and the amount of monomer used in the blocking reaction. The effect of i-PP-b-PS block copolymer on PP-PS blends and that of i-PP-b-PMMA block copolymer on PP-PMMA blends were studied by scanning electron microscopy.  相似文献   

6.
Although under normal conditions only the crystallization behavior of PE on oriented iPP substrates can be studied due to the higher melting point of iPP, the faster crystallization rate of a molten, oriented HDPE film compared to a nonoriented iPP layer was used to study the crystallization of iPP on the oriented HDPE film by means of transmission electron microscopy (TEM) and electron diffraction (ED). Besides the known epitaxial relationship of HDPE/iPP with their chains 50° apart, two new orientation relationships with (a) chains of both polymers parallel and (hk0)iPP in contact with the HDPE substrate, and (b) the a‐axis of iPP crystals parallel to the chain direction of HDPE but (001)iPP in contact with the HDPE substrate were observed. Both orientations are assumed as graphoepitaxy. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1893–1898, 1999  相似文献   

7.
The combination of the control of the concentration of stereodefects in isotactic polypropylene using metallocene catalysts and the crystallization via the mesophase is a strategy to tailor the mechanical properties. Stiff materials, flexible materials, and thermoplastic elastomers can be produced depending only on the concentration of rr stereodefects. Modulus, ductility, and strength can be modulated through the crystallization of α and γ forms or of the mesophase. Different morphologies are observed depending on the stereoregularity and conditions of crystallization. Crystals of the mesomorphic form always exhibit a nodular morphology, accounting for the similar good deformability of all quenched samples, whatever the concentration of stereodefects. The mesophase transforms by thermal treatments into the α form preserving the nodular morphology, with increase of strength while maintaining the ductility typical of the mesophase. Annealing of the mesophase permits a precise adjustment of crystallinity and size of nodular crystals offering additional options to modify the mechanical properties. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 677–699  相似文献   

8.
Shear-induced crystallization of isotactic polypropylene (iPP) homo-, block, and random copolymers was studied and compared to that in quiescent melt. It was evidenced by means of the thermo-optical technique that melt-shearing, caused by fiber pulling, is associated with the development of α-row-nuclei. The surface of the in situ formed α-row-nuclei may induce the growth of the β-modification of iPP resulting in a cylindrite of polymorphous composition. The polymorphous composition is controlled by the temperature-dependent relative growth rate of the α- and β-iPP for which a model explanation was given. The β-nucleation ability of the α-row-nuclei is lost by melt-shearing at high temperature or remelting. This was attributed to a coverage of the β-nuclei by the α-phase. The structural memory of the supermolecular structures was studied in repeated melting and crystallization cycles and discussed. It was found that the quality of the fiber did not influence the mechanisms concluded. The shear-induced crystallization of propylene block copolymers was highly analogous to the homopolymers. In case of the random copolymers, however, crystallization in sheared melt resulted in an α-cylindritic structure, because for propylene random copolymers the growth rate of the α-modification is always higher than that of the β. It was also demonstrated that the mechanism of shear-induced crystallization was unaffected when the crystallizing PP melt contained selective β-nucleants. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Previous work showed that annealing induced the great improvement of fracture resistance of β‐iPP, relating to the decreased number of chain segments in the amorphous region. To further prove the rationality of this observation, in this work, the ethylene‐octene copolymer (POE) toughened isotactic polypropylene (iPP) blends with or without β‐phase nucleating agent (β‐NA) were adopted and the changes of microstructure and fracture resistance during the annealing process were further investigated comparatively. The results showed that, whether for the α‐phase crystalline structure (non‐nucleated) or for the β‐phase crystalline structure (β‐NA nucleated) in iPP matrix, annealing can induce the dramatic improvement of fracture resistance at a certain annealing temperature (120–140 °C for β‐NA nucleated blends whereas 120–150 °C for non‐nucleated blends). Especially, non‐nucleated blends exhibit more apparent variations in fracture resistance compared with β‐NA nucleated blends during the annealing process. The phase morphology of elastomer, supermolecular structure of matrix, the crystalline structure including the degree of crystallinity and the relative content of β‐phase, and the relaxation of chain segments were investigated to explore the toughening mechanism of the samples after being annealed. It was proposed that, even if the content of elastomer is very few, the excellent fracture resistance can be easily achieved through adjusting the numbers of chain segments in the amorphous phase by annealing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

10.
Temperature dependency of crystalline lamellar thickness during crystallization and subsequent melting in isotactic polypropylene crystallized from both quiescent molten state and stress‐induced localized melt was investigated using small angle X‐ray scattering technique. Both cases yield well‐defined crystallization lines where inverse lamellar thickness is linearly dependent on crystallization temperature with the stretching‐induced crystallization line shifted slightly to smaller thickness direction than the isothermal crystallization one indicating both crystallization processes being mediated a mesomorphic phase. However, crystallites obtained via different routes (quiescent melt or stress‐induced localized melt) show different melting behaviors. The one from isothermal crystallization melted directly without significant changing in lamellar thickness yielding well‐defined melting line whereas stress‐induced crystallites followed a recrystallization line. Such results can be associated with the different extent of stabilization of crystallites obtained through different crystallization routes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 957–963  相似文献   

11.
Polypropylene-based nanocomposites filled with polypropylene-grafted multiwalled carbon nanotubes (PP-g-MWNT) were compared to PP samples filled with pristine MWNT. The effect of such additives on the structure and morphology of the polymer matrix was studied by small angle X-ray scattering (SAXS), wide angle X-ray diffraction (WAXD), polarized light optical microscopy (PLOM) and differential scanning calorimetry (DSC). PP-g-MWNT allowed a more efficient and unhindered crystallization at a lamellar level, while MWNT disrupted the order of lamellar stacks, probably because of their tendency to aggregate. A common trend of tensile properties and lamellar morphology as a function of filler content was noted in the series filled with functionalized carbon nanotubes.  相似文献   

12.
In this study, the effects of crystallization conditions (cooling rate and end temperature of cooling) on crystallization behavior and polymorphic composition of isotactic polypropylene/multi‐walled carbon nanotubes (iPP/MWCNTs) composites nucleated with different concentrations of β‐nucleating agent (tradename TMB‐5) were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD) and scanning electronic microscopy (SEM). The results of DSC, WAXD and SEM revealed that the addition of MWCNTs and TMB‐5 evidently elevates crystallization temperatures and significantly decreases the crystal sizes of iPP. Because of the competition between α‐nucleation (provided by MWCNTs) and β‐nucleation (induced by TMB‐5), the β‐phase crystallization takes place only when 0.15 wt% and higher concentration of TMB‐5 is added. Non‐isothermal crystallization kinetics study showed that the crystallization activation energy ΔE of β‐nucleated iPP/MWCNTs composites is obviously higher than that of pure iPP, which slightly increases with the increase of TMB‐5 concentration, accompanying with the transition of its polymorphic crystallization behavior. The results of non‐isothermal crystallization and melting behavior suggested that the cooling rate and end temperature of cooling (Tend) are important factors in determining the proportion and thermal stability of β‐phase: Lower cooling rate favors the formation of less amount of β‐phase with higher thermal stability, while higher cooling rate encourages the formation of higher proportion of β‐phase with lower thermal stability. The Tend = 100°C can eliminate the β–α recrystallization during the subsequent heating and therefore enhance the thermal stability of the β‐phase. By properly selecting TMB‐5 concentration, cooling rate and Tend, high β‐phase proportion of 88.9% of the sample was obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In this work, a considerable low‐temperature toughness enhancement of isotactic polypropylene (iPP) was achieved by adding 30 wt% ethylene propylene diene monomer rubber (EPDM) as well as traces of β‐nucleating agent (β‐NAs) and carbon nanotubes (CNTs). The impact strength of the iPP/30 wt% EPDM blend with 0.1 wt% β‐NAs reached 6.57 kJ/m2 at ?20°C, over 2.5 times of pure iPP. A slightly improved impact strength was further found in the β‐nucleated iPP/30 wt% EPDM at the presence of 0.05 wt% CNTs. The presence of traces of CNTs, β‐NAs, and EPDM displayed synergistic low‐temperature toughness reinforcement effect on the iPP blends. The underlying toughening mechanism was attributed to the formation of a great amount of voids and plastic deformation of iPP matrix affected by CNTs, β‐NAs, and EPDM. Our work provided a feasible strategy to significantly increase the low‐temperature toughness of iPP.  相似文献   

14.
In this work, as a part of a long‐term project aimed at controlling of crystal structure and phase morphology for a injection molded product, we investigated the oriented structure and possible epitaxial growth of polyolefin blend (low‐density polyethylene (LLDPE)/isotatic polypropylene (iPP)), achieved by dynamic packing injection molding, which introduced strong oscillatory shear on the gradually‐cooled melt during the packing process. The crystalline and oriented structures of the prepared blends with different compositions were estimated in detail through 2D X‐ray diffraction, calorimetry, and optical microscopy. As iPP was the dominant phase (its content was more than 50 wt%), our results indicated that it could be highly oriented in the blends. In such case, it was interesting to find that LLDPE epitaxially crystallized on the oriented iPP through a crystallographic matching between (100)LLDPE and (010)iPP, resulting in an inclination of LLDPE chains, about 50° to the iPP chain axis. On the other hand, as iPP was the minor phase, iPP was less oriented and no epitaxial growth between iPP and LLDPE was observed; even LLDPE remained oriented. The composition‐dependent epitaxial growth of LLDPE on oriented iPP could be understood as due to: (1) the effect of crystallization sequence, it was found that iPP always crystallized before LLDPE for all compositions; (2) the dependence of oriented iPP structure on the blend composition; (3) the “mutual nucleation” between LLDPE and iPP due to their partial miscibility. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
16.
This article discusses the influence of two natural terpene resins (NTR), poly(α‐pinene) (PαP A115) and poly(d‐limonene) (PL C115), on morphology, miscibility, thermal, and dynamic‐mechanical properties of their blends with isotactic polypropylene (iPP). The NTR have interesting physical and chemical properties, and they are approved for food contact application. From the results of differential scanning calorimetry and dynamic‐mechanical thermal analysis it was deduced that both the resins were completely miscible with the amorphous iPP up to the composition investigated here (70/30 wt %). Scanning electron microscopy (SEM) analysis instead showed that the 70/30 iPP/PαP A115 blend and 80/20 and 70/30 iPP/PL C115 blends contained very small domains homogeneously distributed into the matrix. It is hypothesized that the domains are likely formed by the terpene‐rich phase, and the matrix by the iPP‐rich phase (besides the crystallized iPP phase). The iPP‐rich phase and the NTR‐rich phase would have the glass transition temperatures so close that they cannot be resolved by DSC and DMTA. Finally, for the iPP/PαP A115 system an upper critical solution temperature (UCST) is proposed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 867–878, 1999  相似文献   

17.
The interfacial interaction between glass fibers (GFs) and polypropylene (PP) resin is the key factor which affects the properties of GFs reinforced PP composites. The β-transcrystallization (β-TC) structure induced by β-nucleating agent (β-NA) at the interface is beneficial to improving the interfacial performance and comprehensive mechanical properties. However, due to the poor adhesive ability, it is difficult to introduce β-NAs onto GFs surface directly. In this work, for solving above problem, the sodium carboxymethyl cellulose (CMC) and  NH2 functionalized multiwalled carbon nanotubes (CNTs) were used to construct the network structure on GFs (CMC-CNT-GF) through plenty of active groups. Furthermore, the zinc phthalate (ZnPht, β-NA) was synthesized and coated on GFs surface by hydrogen bonds interaction with CMC-CNT and physical anchoring effect (ZnPht@CMC-CNT-GF). Finally, the hybrid GFs reinforced PP composite (iPP/ZnPht@CMC-CNT-GF) was prepared, which exhibited enhanced tensile, flexural, and impact strength by 20.1, 9.3, and 33.3%, respectively when compared with the iPP/raw GF due to the formation of β-TC and improvement of interfacial adhesion. This study provides an effective strategy to introduce β-NAs on GFs with network structure for improving interfacial properties by inducing β-TC to enhance the strength and toughness of composite, which could be applied in other fiber/semicrystalline polymer systems.  相似文献   

18.
Using scanning electronic microscope, X-ray diffraction analysis, PYR-GCMS and IR etc., we studied the evolving process of the composition and structure of PAN carbon fiber during preoxidation. In the initial stage of preoxidation, PAN filament tows disappear and become semi-thaw. At first, reactions happen between the copolymers and esters disappear. The molecules annularly crosslink and the index of cyclation slowly increases. It is easy to fix the structure and form defects during the initial and the medium stages, which are most reactive. More traction is advised in these stages to minimize the structural deficiencies. In the medium stage of preoxidation, the fiber was reshaped into new sheet stacks and gradually changed to sheet sectors, and this structure tends to be stable in the final stage. Induced by acid and ester copolymer, PAN fiber forms a very stable cycle structure in the final stage. Besides, monomer, dimmer and trimer obviously decrease. In the final stage of the preoxidation, there exi  相似文献   

19.
The aim of this paper is to demonstrate that the stress–strain behavior of natural rubber reinforced with short pineapple leaf fiber (PALF) can easily be manipulated by changing the cross-link density and the amount of carbon black (CB) primary filler. This gives more manageable control of mechanical properties than is possible with conventional particulate fillers alone. This type of hybrid rubber composite displays a very sharp rise in stress at very low strains, and then the stress levels off at medium strains before turning up again at the highest strains. The composites studied here contain a fixed amount of PALF at 10 part (by weight) per hundred rubber (phr) and varying carbon black contents from 0 to 30 phr. To change the cross-link density, the amount of sulfur was varied from 2 to 4 phr. Swelling ratio results indicate that composites prepared with greater amounts of sulfur and carbon black have greater cross-link densities. Consequently, this affects the stress–strain behavior of the composites. The greater the cross-link density, the less is the strain at which the stress upturn occurs. Variations in the rate of stress increase (although not the stress itself) in the very low strain region, while dependent on fillers, are not dependent on the crosslink density. The effect of changes in crosslinking is most obvious in the high strain region. Here, the rate of stress increase becomes larger with increasing cross-link density. Hence, we demonstrate that the use of PALF filler, along with the usual carbon primary filler, provides a convenient method for the manipulation of the stress–strain relationships of the reinforced rubber. Such composites can be prepared with a controllable, wide range of mechanical behavior for specific high performance engineering applications.  相似文献   

20.
PE chains can proceed template crystal growth on multi‐walled carbon nanotubes (MWCNTs) surface and develop into hybrid shish‐kebab (HSK) abiding by the “soft epitaxy” mechanism. For large‐diameter carbon nanofiber (CNF), the lattice matching and epitaxy are the main mechanism for hybrid structure formation under the static state. This study provided a new understanding of HSK formation, wherein PE underlay on the surface of carbon material fiber played an important role. The shear flow induced PE chains to orient along the CNF surface and formed PE underlayer. Subsequently, ordered subglobules were periodically formed along the CNF axis and finally evolved to typical HSK structures with well‐aligned arraying PE lamellae rather than random one. As the diameter increased to 7000 nm, even though the graphite (002) planes in carbon fibers (CFs) was similar to that in CNFs, the attractive van der Waals interactions between CFs and PE chains were too weak to drive enough PE chains to absorb on the CFs surface and form PE underlay even under the shear flow, leading to the absence of PE lamellae on the CF surface. Based on that, the “soft epitaxy” could be the main formation mechanism of HSK structures for carbon material fibers regardless of their diameters. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 297–303  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号