首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, a molecular dynamics simulation method was introduced to compute the preassembled system of molecular imprinted polymers for sulfamethoxazole monomer. The results revealed that the ratio of sulfamethoxazole as template molecule to 3‐aminopropyltriethoxysilane as functional monomer to tetraethylorthosilicate as cross‐linker of 10:10:40 led to the most stable template‐functional monomer cluster. Based on the result of computational simulation, CdTe@SiO2 core–shell imprinted polymers, a cadmium telluride quantum dots layer on the surface of aminofunctionalized SiO2, were synthesized as the fluorescent sensor. Then, a series of measures were used to characterize the structure and morphology to get optimal sensors. The concentration range was 5.0–30.0 μmol/L between molecular imprinted polymers at CdTe at SiO2, and sulfamethoxazole of the fluorescence intensity. To further verify the reliability and accuracy of the fluorescent sensor, the application was successfully by analyzing sulfamethoxazole in pure milk and lake water. The results showed the recoveries were above 96.89% with a relative standard deviation of 1.25–5.45%, and the fluorescence sensor with selective recognition provides an alternative solution for the determination of sulfamethoxazole.  相似文献   

2.
Based on the polyelectrolyte-protected CdTe quantum dots (QDs), which were prepared by self-assembling of QDs and poly-diallyldimethylammonium chloride (PDADMAC) in the help of electrostatic attraction, the strong fluorescence silica nanoparticles (QDs-PDADMAC@SiO2) have been prepared via a water-in-oil reverse microemulsion method. Transmission electron microscopy and Zeta potential analysis were used to characterize the as-prepared nanoparticles. All of the particles were almost spherical and there is a uniform distribution of the particle size with the average diameter about 25 nm. There is a large Zeta potential of −35.07 mV which is necessary for good monodispersity of nanoparticles solution. As compared with the QDs coated by SiO2 (QDs@SiO2), the QDs-PDADMAC@SiO2 nanoparticles have much stronger fluorescence, and their fluorescence stability could be obviously improved. Moreover, QDs-PDADMAC@SiO2 exhibits good biological compatibility which promotes their application in cellular imaging.  相似文献   

3.
A novel ratio-fluorescent probe based on molecular imprinting polymer ( MIP) for the detection of sulfadiazine was prepared by using nitrogen-doped carbon quantum dots (N-CQDs) as the fluorescence response signal, silica-embedded cadmium telluride quantum dots ( CdTe QDs) as the fluorescence reference signal, sulfadiazine ( SDZ) as template molecule, acrylamide as functional monomer, N, N-methyl bisacrylamide as crosslinking agent and 2,2-Azobisisobutyronitrile as initiator. The results showed that the probe has a core-shell structure and fluorescence sensitive to SDZ, by the characterization of scanning electron microscopy, transmission electron microscopy, and fluorescence spectrophotometer. Under the wavelength of 360 nm, the ratio-fluorescent signal of probe showed a linear response with SDZ concentration in the range of 0-100 μmol / L with the detection limit of 11 nmol / L. Also, the ratio-fluorescent probe was applied to the detection of SDZ with a recovery of 92. 0%-95. 1% and relative standard deviation (RSD) of 3. 6% in real water samples. © 2022, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

4.
A fluorescent probe based on CdTe/CdS quantum dots coated with molecularly imprinted polymer shell was designed. The fluorescence emission of the probe was at 622?nm. The probe presented selective adsorption for malachite green and the adsorption caused fluorescence quenching due to fluorescence resonance energy transfer. A linear relationship ranging from 0.05 to 10?μmol·L?1 between relative fluorescence quenching intensities and malachite green concentrations was obtained with a detection limit of 0.029?μmol·L?1. The fluorescent probe was successfully applied to the determination of malachite green in fish with recoveries ranging from 93.3 to 107.7%.  相似文献   

5.
A dual recognition system with a fluorescence quenching of quantum dots (QDs) and specific recognition of molecularly imprinted polymer (MIP) for the detection of chloramphenicol (CAP) was constructed. MIP@SiO2@QDs was prepared by reverse microemulsion method with 3-aminopropyltriethoxysilane (APTS), tetraethyl orthosilicate (TEOS) and QDs being used as the functional monomer, cross-linker and signal sources, respectively. MIP can specifically recognize CAP, and the fluorescence of QDs can be quenched by CAP due to the photo-induced electron transfer reaction between CAP and QDs. Thus, a method for the trace detection of CAP based on MIP@SiO2@QDs fluorescence quenching was established. The fluorescence quenching efficiency of MIP@SiO2@QDs displayed a desirable linear response to the concentration of CAP in the range of 1.00~4.00 × 102 μmol × L−1, and the limit of detection was 0.35 μmol × L−1 (3σ, n = 9). Importantly, MIP@SiO2@QDs presented good detection selectivity owing to specific recognition for CAP, and was successfully applied to quantify CAP in lake water with the recovery ranging 102.0~104.0%, suggesting this method has the promising potential for the on-site detection of CAP in environmental waters.  相似文献   

6.
QD-Au NP@silica mesoporous microspheres have been fabricated as a novel enzyme-mimic nanosensor. CdTe quantum dots (QDs) were loaded into the core, and Au nanoparticles (NPs) were encapsulated in the outer mesoporous shell. QDs and Au NPs were separated in the different space of the nanosensor, which prevent the potential energy or electron transfer process between QDs and Au NPs. As biomimetic catalyst, Au NPs in the mesoporous silica shell can catalytically oxidize glucose as glucose oxidase (GOx)-mimicking. The resultant hydrogen peroxide can quench the photoluminescence (PL) signal of QDs in the microsphere core. Therefore the nanosensor based on the decrease of the PL intensity of QDs was established for the glucose detection. The linear range for glucose was in the range of 5–200 μM with a detection limit (3σ) of 1.32 μM.  相似文献   

7.
Molecularly imprinted covalent organic polymers were constructed by an imine‐linking reaction between 1,3,5‐triformylphloroglucinol and 2,6‐diaminopyridine and used for the selective solid‐phase extraction of benzoxazole fluorescent whitening agents from food samples. Binding experiments showed that imprinting sites on molecularly imprinted polymers had higher selectivity for targets compared with those of the corresponding non‐imprinted polymers. Parameters affecting the solid‐phase extraction procedure were examined. Under optimal conditions, actual samples were treated and the eluent was analyzed with high‐performance liquid chromatography with diode‐array detection. The results showed that the established method has a wide linearity, satisfactory detection limits and quantification limits, and acceptable recoveries. Thus, this developed method possesses the practical potential for the selective determination of benzoxazole fluorescent whitening agents in complex food samples.  相似文献   

8.
马嘉欣  连子如  何橙  王江涛  于仁成 《色谱》2021,39(8):775-780
作为一种新型荧光纳米材料,量子点具有十分优异的光学特性,是分析化学、生物科学、医学等领域研究的热点标记材料.分子印迹聚合物是能够进行特异性识别和选择性吸附的"仿生"材料,它易于制备且具有较好的重现性和稳定性,因而分子印迹技术已成为具有广阔应用前景的识别技术.量子点基分子印迹荧光传感器结合了量子点和分子印迹技术的优势,由...  相似文献   

9.
Novel core-shell molecularly imprinted polymers were prepared based on zinc oxide quantum dots for the determination of 2,4,6-trichlorophenol by fluorescence. Principally, ZnO quantum dots and 2,4,6-trichlorophenol were chosen as the core substrate and the template molecule, respectively. The specific recognition sites for 2,4,6-trichlorophenol were obtained during the polymerization process in presence of 3-aminopropyltriethoxysilane and tetraethylorthosilicate. Molecularly imprinted ZnO quantum dots were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy and the optical properties were evaluated by spectrofluorometry. Under the optimal conditions, molecularly imprinted ZnO quantum dots were successfully applied to the sensitive determination and selective recognition of 2,4,6-trichlorophenol in water. A linear relationship was obtained to cover the concentration range of 0–160?µmol?L?1 with a correlation coefficient of 0.9931 calculated by the Stern–Volmer equation. The products were used for the determination of 2,4,6-trichlorophenol in the water from local rural areas and the results strongly supported that the molecularly imprinted ZnO quantum dots were suitable for the determination of 2,4,6-trichlorophenol in real examples.  相似文献   

10.
毒莠定印迹邻氨基苯硫酚/金纳米粒子复合膜安培传感器   总被引:1,自引:0,他引:1  
在模板分子存在下,在金电极上自组装邻氨基苯硫酚(oATP),通过电聚合制得毒莠定印迹的oATP/金纳米粒子聚合薄膜及其安培传感器.采用循环伏安法和交流阻抗技术对传感器制备过程进行表征,用紫外光谱法研究了单体与模板间的相互作用.以K3Fe(CN)6为探针,示差脉冲伏安曲线的峰电流与毒莠定浓度在2.0×10^-7-2.4×10 4mol/L范围内呈现良好的线性关系(r=0.9963),毒莠定的检出限为6.5×10 8mol/L(S/N=3).将该印迹膜传感器用于环境水样加标回收检测,结果令人满意.  相似文献   

11.
The preparation of molecularly imprinted core–shell magnetic nanoparticles and their subsequent use in the solid‐phase extraction of thiabendazole from citrus sample extracts is described. Molecularly imprinted core–shell magnetic nanoparticles were prepared by the precipitation copolymerization of the imprinting polymerization mixture on the surface of vinyl‐modified silica magnetic nanoparticles and were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The obtained molecularly imprinted core–shell magnetic nanoparticles exhibited a high selectivity for thiabendazole and were easily collected and separated by an external magnetic field without additional centrifugation or filtration steps. Under optimum conditions, a magnetic molecularly imprinted solid‐phase extraction method was developed allowing the extraction of thiabendazole from citrus sample extracts and final determination by high‐performance liquid chromatography with fluorescence detection. The detection limit was 0.2 mg/kg, far lower than the maximum residue limit established within the European Union for thiabendazole in citrus samples.  相似文献   

12.
以柠檬酸为碳源,三聚氰胺和甲醛为双掺杂剂合成碳量子点,并对合成的量子点进行透射电镜(TEM)、傅里叶变换红外光谱(FTIR)、X射线粉末衍射(XRD)、紫外吸收光谱(UV)和荧光光谱(RF)表征,结果表明该量子点粒径均一,发光稳定,适合用作荧光探针。优化了碳量子点含量、pH、反应时间以及温度等影响因素,结果显示检测波长λmax=425 nm时,连翘苷在0.008~0.030 mg/mL范围内有良好的线性关系,1/△f=0.00005(1/c)+0.0003(R2=0.9948),加标回收率在92.5%~106.3%之间,RSD<5%,且干扰物质、反应时间、温度等因素在一定范围内对实验结果的测定无影响。该方法可用于药剂中连翘苷含量的测定。  相似文献   

13.
以巯基乙酸和巯基乙酰肼为稳定剂,制备了酸度敏感型CdTe量子点。经与抗体链接,该量子点具备酸度敏感、免疫识别双重靶向功能。经荧光光谱分析、透射电镜图像及细胞免疫成像证明,抗体已成功链接于量子点表面,且该量子点具有酸度敏感及抗体识别的双重靶向功能,可以实现对肿瘤细胞的特异性标记。  相似文献   

14.
Based on CdTe/CdS quantum dots (CdTe/CdS QDs) fluorescence (FL) reversible control, a new and sensitive FL sensor for determination of anthraquinone (AQ) anticancer drugs (adriamycin and daunorubicin) and herring sperm DNA (hsDNA) was developed. Under the experimental conditions, FL of CdTe/CdS QDs can be effectively quenched by AQ anticancer drugs due to the binding of AQ anticancer drugs on the surface of CdTe/CdS QDs and photoinduced electron transfer (PET) process from CdTe/CdS QDs to AQ anticancer drugs. Addition of hsDNA afterwards brought the restoration of CdTe/CdS QDs FL intensity, as AQ anticancer drugs peeled off from the surface of CdTe/CdS QDs and embedded into hsDNA double helix structure. The liner ranges and the detection limits of FL quenching methods for two AQ anticancer drugs were 0.33-9 μg mL−1 and 0.09 μg mL−1 for ADM and 0.15-9 μg mL−1 and 0.04 μg mL−1 for DNR, respectively. The restored FL intensity was proportional to concentration of hsDNA in the range of 1.38-28 μg mL−1and the detection limit for hsDNA was 0.41 μg mL−1. It was applied to the determination of AQ anticancer drugs in human serum and urine samples with satisfactory results. The reaction mechanism of CdTe/CdS QDs FL reversible control was studied.  相似文献   

15.
A systematic approach and a new scheme for the evaluation of the as–is encapsulation of CdSe/ZnS core/shell quantum dots into polymer matrices is proposed, aiming to the implementation of thin film photonic integrated structures. Work focuses on quantum dots capped by hexadecylamine and trioctylphosphine oxide with no ligand exchange or other intermediate processing steps involved. The polymers studied include poly(methyl–methacrylate) (PMMA), polystyrene and acrylic polymers incorporating long alkyl chains, which are expected to promote the compatibility of the quantum dot ligands to that of the polymer chains. In this approach, the variation of photoluminescence properties of the nanocomposite thin films is measured versus increased concentration of the quantum dots, so as to evaluate the suitability of each polymer structure as an efficient host. Furthermore, the refractive index of the quantum dots/polymer nanocomposite thin films are also estimated using white light reflectance spectroscopy data, as appropriate for the integration of photonic devices. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 552–560  相似文献   

16.
A novel CdTe quantum dots‐modified carbon paste electrode (QDMCPE) was fabricated and used to study the electrooxidation of dopamine and uric acid and their mixtures by electrochemical methods. Using square wave voltammetry (SWV), a highly sensitive and simultaneous determination of dopamine and uric acid was explored at the modified electrode. SWV peak currents of dopamine and uric acid increased linearly with their concentrations in the ranges of 7.5×10?8–6.0×10?4 M, and 7.5×10?6–1.4×10?3 M, respectively. Finally this new sensor was used for determination of dopamine and uric acid in some real samples.  相似文献   

17.
Sulfamethazine, one of the most widely applied feed additives, has been shown to cause negative health effects to humans. In the present work, a novel and facile fluorescence visual detection probe was established to determine sulfamethazine in milk samples with naked-eye detection. Considering the good stability, excellent optical properties, and easy synthesis, blue-emission carbon dots were used as the standard signal and red-emission CdTe quantum dots as the responsive signal for the determination of sulfamethazine. The fluorescence intensity of red-emission CdTe quantum dots was gradually quenched with increasing concentration of sulfamethazine, while the blue-emission carbon dots response remained constant. Apparent color variations were observed by naked-eye detection in the concentration range from 9.0 to 54?µmol?·?L?1. In addition, the presented strategy was shown to be promising to provide a rapid, facile, and sensitive method for the determination of sulfamethazine in milk samples with few interferences.  相似文献   

18.
Zhang LY  Zheng HZ  Long YJ  Huang CZ  Hao JY  Zhou DB 《Talanta》2011,83(5):420-1720
CdTe quantum dots (QDs) were used as a highly selective probe for the detection of prion protein. Orange-emitting precipitates appeared within 30 s of the addition of recombination prion protein (rPrP) to a solution of green-emitting CdTe QDs. This allowed colorimetric qualitative and semi-quantitative detection of rPrP. The decrease in fluorescence intensity of the supernatant could be used for quantitative detection of rPrP. The fluorescence intensity of the supernatant was inversely proportional to the rPrP concentration from 8 to 200 nmol L−1 (R2 = 0.9897). Transmission electron microscopy results showed that fibrils existed in the precipitates and these were partly transformed to amyloid plaques after the addition of rPrP.  相似文献   

19.
Organically modified silica substrate containing amine and vinyl functional groups were used for reduction and stabilization of palladium nanoparticles. Uniform spherical nanoparticles of palladium with average diameter of 10 nm were formed on silica substrate by direct contact of the substrate with an aqueous solution of palladium precursor, without the addition of any chemical reducer. Moreover, a sensitive and selective solid state electrochemiluminescence sensor was fabricated for the determination of imipramine, based on Ru(bpy)32+-palladium nanoparticles doped carbon ionic liquid electrode. In this process, imipramine acts as a co-reactant for Ru(bpy)32+. It is believed that the enhancement of the electrochemiluminescence signal in the presence of palladium nanoparticles in the composite is due to palladium catalytic effect on electrochemical and also chemical process involved in formation of Ru(byp)32+*. In addition, the results confirmed that, the rigid composite electrode shows the characteristic of microelectrode arrays. The proposed method was applied to the determination of imipramine in tablets and urine samples. The electrochemiluminescence intensity showed good linearity with the imipramine concentration from 1–100 pM, with a detection limit of 0.1 pM.  相似文献   

20.
Nitrogen doped carbon quantum dots (N-CQDs) were synthesised by a hydrothermal method using ascorbic acid and valine as precursors. The as-synthesised N-CQDs were characterised by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV?vis absorption spectra, as well as fluorescence spectrophotometer. The results revealed that the as-prepared N-CQDs were spherical shaped with an average diameter of 4 nm and emitted bright blue photoluminescence with a quantum yield of approximately 4.8 %. Additionally, we found that the fluorescence of the N-CQDs was intensively quenched by the addition of picric acid (PA). The decrease of the fluorescence intensity made it possible to determine PA in the linear range of 0.06–7.81 µg ml1 based on the fluorescence resonance energy transfer between PA and N-CQDs. The detection limit was as low as 11.46 ng ml1. The proposed approach was further successfully applied for the determination of PA in water sample collected from Fenhe river for public safety and security, suggesting its great potential towards water routine analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号