首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of water-soluble redox-active molecules with high potentials is one of the effective ways to enhance the energy density of aqueous organic flow batteries (AOFBs). Herein, a series of promising N-substituted benzidine analogues as water-soluble catholyte candidates with controllable redox potentials (0.78–1.01 V vs. standard hydrogen electrode (SHE)) were obtained by the molecular engineering of aqueous irreversible benzidines. Theoretical calculations reveal that the redox potentials of these benzidine derivatives in acidic solution are determined by their electronic structure and alkalinity. Among these benzidine derivatives, N,N,N′,N′-tetraethylbenzidine(TEB) shows both high redox potential (0.82 V vs. SHE) and good solubility (1.1 M). Pairing with H4[Si(W3O10)4] anolyte, the cell displayed discharge capacity retention of 99.4 % per cycle and a high coulombic efficiency (CE) of ∼100 % over 1200 cycles. The stable discharge capacity of 41.8 Ah L−1 was achieved at the 1.0 M TEB catholyte with a CE of 97.2 % and energy efficiency (EE) of 91.2 %, demonstrating that N-substituted benzidines could be promising for AOFBs.  相似文献   

2.
As a green route for large-scale energy storage, aqueous organic redox flow batteries (AORFBs) are attracting extensive attention. However, most of the reported AORFBs were operated in an inert atmosphere. Herein, we clarify this issue by using the reported AORFB (i.e., 3, 3′-(9,10-anthraquinone-diyl)bis(3-methylbutanoicacid) (DPivOHAQ)||Ferrocyanide) as an example. We demonstrate that the dissolved O2 can oxidize the discharged DPivOHAQ in anolyte, leading to capacity-imbalance between anolyte and catholyte. Therefore, this cell shows continuous capacity fading when operated in an air atmosphere. We propose a simple strategy for this challenge, in which the oxygen evolution reaction (OER) in catholyte is employed to balance oxygen reduction reaction (ORR) in anolyte. When using the Ni(OH)2-modifed carbon felt (CF) as a current collector for catholyte, this cell shows an excellent stability in air atmosphere because the Ni(OH)2-induced OER capacity in catholyte exactly balances the ORR capacity in anolyte. Such O2-balance strategy facilitates AORFBs’ practical application.  相似文献   

3.
Covalent organic frameworks (COFs) display great potential to be assembled into proton conductive membranes for their uniform and controllable pore structure, yet constructing self-standing COF membrane with high crystallinity to fully exploit their ordered crystalline channels for efficient ionic conduction remains a great challenge. Here, a macromolecular-mediated crystallization strategy is designed to manipulate the crystallization of self-standing COF membrane, where the −SO3H groups in introduced sulfonated macromolecule chains function as the sites to interact with the precursors of COF and thus offer long-range ordered template for membrane crystallization. The optimized self-standing COF membrane composed of highly-ordered nanopores exhibits high proton conductivity (75 mS cm−1 at 100 % relative humidity and 20 °C) and excellent flow battery performance, outperforming Nafion 212 and reported membranes. Meanwhile, the long-term run of membrane is achieved with the help of the anchoring effect of flexible macromolecule chains. Our work provides inspiration to design self-standing COF membranes with ordered channels for permselective application.  相似文献   

4.
Molecule aggregation in solution is acknowledged to be universal and can regulate the molecule's physiochemical properties, which however has been rarely investigated in electrochemistry. Herein, an electrochemical method is developed to quantitatively study the aggregation behavior of the target molecule methyl viologen dichloride. It is found that the oxidation state dicationic ions stay discrete, while the singly-reduced state monoradicals yield a concentration-dependent aggregation behavior. As a result, the molecule's energy level and its redox potential can be effectively regulated. This work does not only provide a method to investigate the molecular aggregation, but also demonstrates the feasibility to tune redox flow battery's performance by regulating the aggregation behavior.  相似文献   

5.
Aqueous redox flow batteries (ARFBs) are a promising technology for grid-scale energy storage, however, their commercial success relies on redox-active materials (RAM) with high electron storage capacity and cost competitiveness. Herein, a redox-active material lithium ferrocyanide (Li4[Fe(CN)6]) is designed. Li+ ions not only greatly boost the solubility of [Fe(CN)6]4− to 2.32 M at room temperature due to weak intermolecular interactions, but also improves the electrochemical performance of [Fe(CN)6]4−/3−. By coupling with Zn, ZIRFBs were built, and the capacity of the batteries was as high as 61.64 Ah L−1 (pH-neutral) and 56.28 Ah L−1 (alkaline) at a [Fe(CN)6]4− concentration of 2.30 M and 2.10 M. These represent unprecedentedly high [Fe(CN)6]4− concentrations and battery energy densities reported to date. Moreover, benefiting from the low cost of Li4[Fe(CN)6], the overall chemical cost of alkaline ZIRFB is as low as $11 per kWh, which is one-twentieth that of the state-of-the-art VFB ($211.54 per kWh). This work breaks through the limitations of traditional electrolyte composition optimization and will strongly promote the development of economical [Fe(CN)6]4−/3−-based RFBs in the future.  相似文献   

6.
从广涛  卢怡君 《物理化学学报》2022,38(6):2106008-22
液流电池因为具有高储能效率,低成本,以及可解耦的能源储存和功率输出设计,被广泛认为是适用于大型储能的首选技术。但是长期以来,液流电池在电网中的大规模部署一直受限于现有的金属基活性材料的高成本和较低的储能密度。因其潜在的低成本,丰富的原材料来源,高度可调的分子结构,具有氧化还原活性的有机分子作为潜在的液流电池活性材料,受到越来越多的关注。本文首先介绍了液流电池的工作机制,以提升非水系有机液流电池的储能密度的策略为重点,总结了非水系液流电池中有机活性材料的研究进展。并讨论了这些策略存在的问题和未来的发展方向。  相似文献   

7.
High energy density and intrinsic safety are the central pursuits in developing rechargeable Zinc-ion batteries (ZIBs). The capacity and stability of nickel cobalt oxide (NCO) cathode are unsatisfactory because of its semiconductor character. Herein, we propose a built-in electric field (BEF) approach by synergizing cationic vacancies and ferroelectric spontaneous polarization on cathode side to facilitate electron adsorption and suppress zinc dendrite growth on the anode side. Concretely, NCO with cationic vacancies was constructed to expand lattice spacing for enhanced zinc-ion storage. Heterojunction with BEF leads to the Heterojunction//Zn cell exhibiting a capacity of 170.3 mAh g−1 at 400 mA g−1 and delivering a competitive capacity retention of 83.3 % over 3000 cycles at 2 A g−1. We conclude the role of spontaneous polarization in suppressing zinc dendrite growth dynamics, which is conducive to developing high-capacity and high-safety batteries via tailoring defective materials with ferroelectric polarization on the cathode.  相似文献   

8.
Secondary Li?ion batteries have been paid attention to wide‐range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium‐ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium‐ion (Li?ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li?ion batteries over the decades because of their superior properties such as cost‐efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li?ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono‐ and multilayer polyolefin separators if they are modified using suitable methods and materials.  相似文献   

9.
10.
The self-exothermic in early stage of thermal runaway (TR) is blasting-fuse for Li-ion battery safety issues. The exothermic reaction between lithiated graphite (LiCx) and electrolyte accounts for onset of this behavior. However, preventing the deleterious reaction still encounters hurdles. Here, we manage to inhibit this reaction by passivating LiCx in real time via targeted repair of SEI. It is shown that 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)cyclotrisiloxane (D3F) can be triggered by LiCx to undergo ring-opening polymerization at elevated temperature, so as to targeted repair of fractured SEI. Due to the high thermal stability of polymerized D3F, exothermic reaction between LiCx and electrolyte is inhibited. As a result, the self-exothermic and TR trigger temperatures of pouch cell are increased from 159.6 and 194.2 °C to 300.5 and 329.7 °C. This work opens up a new avenue for designing functional additives to block initial exothermal reaction and inhibit TR in early stage.  相似文献   

11.
Inspired by hydrophobic interface, a novel design of “polysulfide‐phobic” interface was proposed and developed to restrain shuttle effect in lithium–sulfur batteries. Two‐dimensional VOPO4 sheets with adequate active sites were employed to immobilize the polysulfides through the formation of a V?S bond. Moreover, owing to the intrinsic Coulomb repulsion between polysulfide anions, the surface anchored with polysulfides can be further evolved into a “polysulfide‐phobic” interface, which was demonstrated by the advanced time/space‐resolved operando Raman evidences. In particular, by introducing the “polysulfide‐phobic” surface design into separator fabrication, the lithium–sulfur battery performed a superior long‐term cycling stability. This work expands a novel strategy to build a “polysulfide‐phobic” surface by “self‐defense” mechanism for suppressing polysulfides shuttle, which provides new insights and opportunities to develop advanced lithium–sulfur batteries.  相似文献   

12.
The cell membrane contains specific systems for passive and active transport of ions between the cytoplasm and the extracellular medium. For a number of small and medium-sized transport molecules like valinomycin and gramicidin A, extensive structural and kinetic data are available and it is possible in these cases to understand the transport function on the basis of their molecular structure. Incorporation into artificial bimolecular lipid membranes opens up the possibility of studying the kinetic properties of biological transport systems in detail.  相似文献   

13.
Redox polymers have been an expanding research area over the last 30 years. The design of redox polymers for mediated bioelectrocatalysis revolutionized glucose biosensors in the early 1990s. These concepts were then applied to biofuel cells in the 2000s, but it was not until recently that researchers further translated these concepts to the fields of electrosynthesis, supercapacitors, and redox flow batteries. This review will give a short background to the early work in the field but will primarily discuss the recent applications of the electrosynthesis, supercapacitors, and redox flow batteries.  相似文献   

14.
Use of redox mediators (RMs) is an effective strategy to enhance reaction kinetics of multi-electron sulfur electrochemistry. However, the soluble small-molecule RMs usually aggravate the internal shuttle and thus further reduce the battery efficiency and cyclability. A semi-immobilization strategy is now proposed for RM design to effectively regulate the sulfur electrochemistry while circumvent the inherent shuttle issue in a working battery. Small imide molecules as the model RMs were co-polymerized with moderate-chained polyether, rendering a semi-immobilized RM (PIPE) that is spatially restrained yet kinetically active. A small amount of PIPE (5 % in cathode) extended the cyclability of sulfur cathode from 37 to 190 cycles with 80 % capacity retention at 0.5 C. The semi-immobilization strategy helps to understand RM-assisted sulfur electrochemistry in alkali metal batteries and enlightens the chemical design of active additives for advanced electrochemical energy storage devices.  相似文献   

15.
采用高分辨质谱仪跟踪监测对硝基甲苯在多硫化钠存在下于乙醇-碱性水溶液中生成对氨基苯甲醛过程中反应中间体的变化及转变规律.结果显示,在80℃时反应进行到120min之内,有数种分子量较大的缩合中间体生成,表明对氨基苯甲醛可能是经类席夫碱的多聚体水解生成的.同时,对席夫碱多聚体的形成提出了与文献不同的机理.  相似文献   

16.
《Analytical letters》2012,45(1-3):528-559
Measurements based on absorption, reflectance, or luminescence of molecular species or complex ions can be carried out directly on a solid support simultaneously to the retention of the analyte. The use of this strategy in flow-based systems is advantageous in view of the reproducible handling of solutions in retention and elution steps of the analyte. This approach can be exploited to increase sensitivity, minimize reagent consumption as well as waste generation, improve selectivity or for simultaneous determination based on selective retention or differences in sorption rates of the analytes. This review focuses on the main characteristics of direct solid-phase measurements in flow systems, including the discussion of advantages and limitations and practical guidelines to the successful implementation of this approach. Selected applications in diverse fields, such as pharmaceutical, food, and environmental analysis are discussed.  相似文献   

17.
18.
Use of redox mediators (RMs) is an effective strategy to enhance reaction kinetics of multi‐electron sulfur electrochemistry. However, the soluble small‐molecule RMs usually aggravate the internal shuttle and thus further reduce the battery efficiency and cyclability. A semi‐immobilization strategy is now proposed for RM design to effectively regulate the sulfur electrochemistry while circumvent the inherent shuttle issue in a working battery. Small imide molecules as the model RMs were co‐polymerized with moderate‐chained polyether, rendering a semi‐immobilized RM (PIPE) that is spatially restrained yet kinetically active. A small amount of PIPE (5 % in cathode) extended the cyclability of sulfur cathode from 37 to 190 cycles with 80 % capacity retention at 0.5 C. The semi‐immobilization strategy helps to understand RM‐assisted sulfur electrochemistry in alkali metal batteries and enlightens the chemical design of active additives for advanced electrochemical energy storage devices.  相似文献   

19.
Lithium-sulfur (Li−S) batteries, possessing excellent theoretical capacities, low cost and nontoxicity, are one of the most promising energy storage battery systems. However, poor conductivity of elemental S and the “shuttle effect” of lithium polysulfides hinder the commercialization of Li−S batteries. These problems are closely related to the interface problems between the cathodes, separators/electrolytes and anodes. The review focuses on interface issues for advanced separators/electrolytes based on nanomaterials in Li−S batteries. In the liquid electrolyte systems, electrolytes/separators and electrodes system can be decorated by nano materials coating for separators and electrospinning nanofiber separators. And, interface of anodes and electrolytes/separators can be modified by nano surface coating, nano composite metal lithium and lithium nano alloy, while the interface between cathodes and electrolytes/separators is designed by nano metal sulfide, nanocarbon-based and other nano materials. In all solid-state electrolyte systems, the focus is to increase the ionic conductivity of the solid electrolytes and reduce the resistance in the cathode/polymer electrolyte and Li/electrolyte interfaces through using nanomaterials. The basic mechanism of these interface problems and the corresponding electrochemical performance are discussed. Based on the most critical factors of the interfaces, we provide some insights on nanomaterials in high-performance liquid or state Li−S batteries in the future.  相似文献   

20.
In recent years, aqueous organic redox flow batteries (AORFBs) have attracted considerable attention due to advancements in grid-level energy storage capacity research. These batteries offer remarkable benefits, including outstanding capacity retention, excellent cell performance, high energy density, and cost-effectiveness. The organic electrolytes in AORFBs exhibit adjustable redox potentials and tunable solubilities in water. Previously, various types of organic electrolytes, such as quinones, organometallic complexes, viologens, redox-active polymers, and organic salts, were extensively investigated for their electrochemical performance and stability. This study presents an overview of recently published novel organic electrolytes for AORFBs in acidic, alkaline, and neutral environments. Furthermore, it delves into the current status, challenges, and prospects of AORFBs, highlighting different strategies to overcome these challenges, with special emphasis placed on their design, composition, functionalities, and cost. A brief techno-economic analysis of various aqueous RFBs is also outlined, considering their potential scalability and integration with renewable energy systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号