首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
荧光探针凭借其选择性好、灵敏度高、响应时间快、易于操作和检测限低等优点得到了广泛的关注。 激发态分子内质子转移(ESIPT)化合物具有特殊的激发态光物理过程,其显著的光物理性质是有较高的荧光量子产率及大的斯托克斯位移。 对于荧光分子而言,较大的斯托克斯位移可以减少自吸收和由内滤效应产生的干扰,增强分子的耐光性,有利于荧光的发射。 本文对ESIPT荧光探针检测离子(包括金属阳离子和阴离子)、中性小分子和生物大分子的研究进展进行阐述,并对ESIPT荧光分子的存在问题和应用前景进行评述。  相似文献   

2.
刘阁  邵杰 《无机化学学报》2011,27(4):731-736
设计合成了一种基于4-甲基-1-羟基二苯甲酮对硝基苯腙的比色和比率荧光阴离子受体1。此类受体以羟基和腙单元为识别位点,以硝基苯基为信号报告基团。向受体1的DMSO溶液中加入AcO-、H2PO4-、F-后,溶液颜色由黄色变为紫红色,而加入所研究的其它阴离子则无变化,从而实现对AcO-、H2PO4-、F-这三种离子的裸眼识别。利用紫外-可见吸收光谱、荧光光谱考察了其与AcO-,H2PO4-,F-,Cl-,Br-,I-等阴离子的识别作用。1H NMR滴定为受体分子与阴离子之间氢键作用本质提供了有力证据。  相似文献   

3.
基于激发态分子内质子转移的新一代荧光探针   总被引:2,自引:0,他引:2  
对被誉为多参数、多功能的第二代荧光探针3-羟基黄酮类衍生物的光物理特性及其在微环境极性、微相变和相分离、膜电位测定等方面的实际应用做了比较详尽的介绍.  相似文献   

4.
The photophysical signature of the tautomeric species of the asymmetric (N,N‐dimethylanilino)‐1,3‐diketone molecule are investigated using approaches rooted in density functional theory (DFT) and time‐dependent DFT (TD‐DFT). In particular, since this molecule, in the excited state, can undergo proton transfer reactions coupled to intramolecular charge transfer events, the different radiative and nonradiative channels are investigated by making use of different density‐based indexes. The use of these tools, together with the analysis of both singlet and triplet potential energy surfaces, provide new insights into excited‐state reactivity allowing one to rationalize the experimental findings including different behavior of the molecule as a function of solvent polarity.  相似文献   

5.
《Analytical letters》2012,45(1):40-52
Abstract

A two-photon fluorescent probe has been adopted for bisulfite based on an intramolecular charge transfer (ICT) mechanism. The fluorescence intensity of the probe decreased by 837 fold following treatment with HSO3? and the detection limit was 42?nM. This probe showed excellent properties such as high photostability, good two-photon properties, and large Stokes shifts. More importantly, this approach offers a rapid, highly selective, and sensitive method to determine HSO3? in buffer solutions and real samples. Furthermore, the probe was successfully used for two-photon fluorescence visualization of trace SO2 derivatives in biological systems.  相似文献   

6.
A new kind of small organic NIR-II fluorophore molecule (ZS-1010) based on intermolecular charge transfer was developed as a NIR-II fluorescent probe for trimethylamine (TMA) detection, which is important for the diagnosis of cardiovascular disease, chronic kidney disease and diabetes. ZS-1010 has a strong push–pull electron system composed of electron donor unit and electron acceptor unit, exhibiting strong absorption and emission in the NIR-II region. When mixed with TMA which possesses strong electron-donating characteristics, the push–pull system of ZS-1010 will be affected along with the dipole moment change, leading to the quenching of fluorescence. This is the first example of TMA fluorescent probe in the NIR-II window showing deep penetration, fast response speed, high selectivity and pH stability.  相似文献   

7.
通过稳态光谱实验和量子化学计算相结合,研究了黄芩素激发态质子转移耦合电荷转移的反应. 实验和计算中S1态吸收峰的缺失表明S1态是暗态. S1暗态导致在实验中观察不到黄芩素在乙醇溶液中的荧光峰,且固体的荧光峰很弱. 黄芩素分子的前线分子轨道和电荷差异密度表明S1态是电荷转移态,然而S2态是局域激发态. 计算的黄芩素分子的势能曲线在激发态只有一个稳定点,这表明了黄芩素激发态分子内质子转移的过程是一个无能垒的过程.  相似文献   

8.
设计并合成了以香豆素为荧光发色团的多氰基分子化合物TCC。分子内强烈的电荷转移效应使得其本身荧光较弱。巯基化合物如半胱氨酸(Cys)、高半胱氨酸(Hcy)和还原型谷胱甘肽(GSH)的加入能与TCC中的三氰基乙烯基进行加成反应从而破坏分子内电荷转移,使分子内电荷转移吸收峰消失,颜色由紫色变成黄绿色,最大吸收波长由560 nm移至380 nm。并且化合物的荧光也随着巯基化合物的加入逐渐增强,荧光的强度与巯基化合物的浓度有很好的线性关系,检测限可以达到10-5 mol/L。其它离子与不含巯基的氨基酸则不会与化合物TCC发生上述反应,也就不会对体系的吸收和荧光光谱产生明显的影响,从而实现高效、专一的识别巯基化合物。  相似文献   

9.
In this work, the optical properties of fluorescent probes used for detection of biothiol were studied by employing time-dependent density functional theory. By calculating the single photon absorption and emission properties of probe Mol.1, Mol.2 and Mol.3 before and after reaction with cysteine and homocysteine, we have investigated the effect of carboncarbon triple bond and benzene ring on the properties of fluorescent probes. It is found that the oscillator strength of probe molecules increases gradually with the improvement of the structure of the electron donor triphenylamine and the addition of carbon-carbon triple bonds, and better properties of fluorescence probes have also been demonstrated. At the same time, the effect of different number of side branches on the molecular properties of the probe was also studied. The results showed that compared with single-branched molecule Z1 and tribranched probe Mol.3, two side probe molecules Z2 had higher oscillator strength andbetter detection effect. In addition, the new single-branched probe Mol.4 with the addition of carbon-carbon triple bonds and benzene rings has better probe properties and simpler structure than the tribranched probe Mol.3.  相似文献   

10.
Herein, two compounds ( 1 a and 1 b ) were rationally constructed as novel reaction‐based fluorescent probes for CN? by making use of the electron‐withdrawing ability of the cyano group that was formed from the sensing reaction. Notably, this design strategy was first employed for the development of fluorescent CN? probes. The experimental details showed that probe 1 a exhibited a fluorescence turn‐on response to CN?, whereas other anions, biological thiols, and hydrogen sulfide gave almost no interference. The detection limit of probe 1 a for CN? was found to be 0.12 μM . The sensing reaction product of 1 a with CN? was characterized by NMR spectroscopy and mass spectrometry. TD‐DFT calculations demonstrated that the formed cyano group drives the intramolecular charge transfer (ICT) process from coumarin dye to the cyano group and thus the original strong ICT from the coumarin dye to the 3‐position pyridyl vinyl ketone substituent is weakened, which results in recovery of coumarin fluorescence. The practical utility of 1 a was also examined. By fabricating paper strips, probe 1 a can be used as a simple tool to detect CN? in field measurements. Moreover, probe 1 a has been successfully applied for quantitative detection of endogenous CN? from cassava root.  相似文献   

11.
Excited‐state intramolecular proton transfer (ESIPT) is a particularly well known reaction that has been very little studied in magnetic environments. In this work, we report on the photophysical behavior of a known ESIPT dye of the benzothiazole class, when in solution with uncoated superparamagnetic iron oxide nanoparticles, and when grafted to silica‐coated iron oxide nanoparticles. Uncoated iron oxide nanoparticles promoted the fluorescence quenching of the ESIPT dye, resulting from collisions during the lifetime of the excited state. The assembly of iron oxide nanoparticles with a shell of silica provided recovery of the ESIPT emission, due to the isolation promoted by the silica shell. The silica network gives protection against the fluorescence quenching of the dye, allowing the nanoparticles to act as a bimodal (optical and magnetic) imaging contrast agent with a large Stokes shift.  相似文献   

12.
刘力宏  张晗  张煊  江云宝 《中国化学》2005,23(4):421-426
Two dual fluorescent receptors (1 and 2) for monosaccharides based on 4-dialky(alkyl=methyl and n-butyl) containing boronic acid group at the amido aniline were synthesized and their spectral properties were investigated. These receptors exhibited dual fluorescence with the long-wavelength band displaying strong solvent-polarity dependence, indicating the occurrence of the excited-state intramolecular charge transfer (ICT).With increasing pH value in aqueous solutions, the hybridization of the boron atom changed from sp^2 to sp^3, inducing a decrease in the total fluorescence quantum yield. The experimental results indicated that the anionic form of the boronate group acted as an electron donor and the benzanilide-like charge transfer was promoted upon hybridization change. In the presence of monosaccharides, the boronic acid in 1 and 2 changed from neutral to anionic form. The intensity of the locally excited (LE) state emission decreased in the presence of sugars while a slight increase in the intensity at the charge transfer (CT) emission occurred. Based on the change in the CT to LE intensity ratios of 1 and 2 due to sugar binding, ratiometric fluorescent assays for monosaccharide sensing were established.  相似文献   

13.
杜娟  赵丹  陈彦国  何治柯 《化学学报》2006,64(10):963-967
探讨了表面活性剂存在下, 水溶性阴离子共轭聚合物聚[5-甲氧基-2-(3-磺酰化丙氧基)-1,4-苯撑乙烯](简写为MPS-PPV)的微环境变化对荧光性质及电荷转移的影响. 结果表明, 阳离子表面活性剂及非离子表面活性剂使MPS-PPV荧光增强, 阴离子表面活性剂使其荧光先增强后减弱; 在MPS-PPV/表面活性剂体系中加入电子接受体Pd2+, 发现非离子表面活性剂体系的荧光猝灭效率提高, 阴离子及阳离子表面活性剂体系荧光猝灭效率下降. 此研究对研制基于阴离子共聚物的新型生物化学传感器具有一定的指导意义.  相似文献   

14.
李超捷  尹少云  潘梅 《化学教育》2021,42(22):48-52
介绍了一个综合化学实验:激发态分子内质子转移(Excited-State Intramolecular Proton Transfer,ESIPT)有机分子的合成与光致发光性能研究。在本实验中,学生将学习并掌握该类有机分子的制备方法以及表征手段。同时学生也将进一步加深对荧光基本原理的理解,以及更深入地掌握荧光光谱仪的使用以及学习常见的光物理性质相关数据的测试方法。通过在不同溶剂条件下测试荧光光谱,让学生能更直观地了解溶剂变色发光效应并思考成因。  相似文献   

15.
王少静  李长伟  李锦  陈邦  郭媛 《化学学报》2017,75(4):383-390
设计合成了一类基于分子内电荷转移(Intramolecular Charge Transfer,ICT)的香豆素类F-荧光探针CS1,CS2和CS3,经1H NMR,13C NMR,IR和HRMS表征了相应探针的结构,并解析了探针CS3的晶体结构.通过核磁和质谱实验验证了探针与F-的作用机理是氟化物脱硅基.光谱分析实验结果显示,CS1,CS2和CS3均具有较好的选择性和灵敏度,且均能成功实现人乳腺癌细胞(MCF-7)中F-的检测.  相似文献   

16.
Given facile synthetic route and excellent photo stability, excited state intramolecular proton transfer (ESIPT)-active luminous materials have gained more and more attention. Here, we focus on photo-induced excitation process and the ESIPT reaction process for the novel 5-benzothiazol-2-yl-6-hydroxy-2-methyl-isoindole-1,3-dione (HPIBT) molecule. On the level of chemical geometries and infrared spectra, we verify that O─H⋯N of HPIBT should be enhanced. We find that a proton is likely to be attracted by enhanced electronic densities around N, that is, charge transfer impetus ESIPT trend. Combing potential energy curves and searching for transition state, we clarify the ultrafast ESIPT mechanism of HPIBT due to a low barrier, which legitimately explains previous experimental characteristics.  相似文献   

17.
Aiming to develop the facile organic fluorophore possessing excited state intramolecular proton transfer (ESIPT) and aggregation-induced emission (AIE), we designed and synthesized two isomers with different linkage site between hydroxyl of 2-(2-hydroxyphenyl) benzothiazole (HBT) and a benzothiazole substituent (para position refers to p-BHBT and ortho position refers to o-BHBT). Fluorescence emission properties of p-BHBT and o-BHBT in THF/water mixtures with different water volume fractions indicated an opposite luminescence in aggregates, in which p-BHBT showed an ESIPT-dependent AIE properties while o-BHBT displayed ESIPT effect and aggregation-caused quenching (ACQ) qualities. A possible mechanism for molecular actions to illustrate the aggregating luminescence alteration of these two isomers had been proposed and verified by theoretical and experimental studies. More importantly, Probe-1, generated from dual ESIPT-AIE fluorophore p-BHBT, was successfully used as a ratiometric fluorescent chemosensor for highly selective (above 15-fold over other ROS) and sensitive (69-fold fluorescence enhancement with 0.22 μM of detection limit) detection of hydrogen peroxide in aqueous solution and living cells, respectively.  相似文献   

18.
A general synthetic method creates a new class of covalently connected, self-threaded, fluorescent molecular probes with figure-eight topology, an encapsulated deep-red fluorophore, and two peripheral peptide loops. The globular molecular shape and rigidified peptide loops enhance imaging performance by promoting water solubility, eliminating probe self-aggregation, and increasing probe stability. Moreover, the peptide loops determine the affinity and selectivity for targets within complex biological samples such as cell culture, tissue histology slices, or living subjects. For example, a probe with cell-penetrating peptide loops targets the surface of cell plasma membranes, whereas, a probe with bone-targeting peptide loops selectively stains the skeleton within a living mouse. The unique combination of bright deep-red fluorescence, high stability, and predictable peptide-based targeting is ideal for photon intense fluorescence microscopy and biological imaging.  相似文献   

19.
The excited-state intramolecular proton transfer (ESIPT) phenomenon is nowadays widely acknowledged to play a crucial role in many photobiological and photochemical processes. It is an extremely fast transformation, often taking place at sub-100 fs timescales. While its experimental characterization can be highly challenging, a rich manifold of theoretical approaches at different levels is nowadays available to support and guide experimental investigations. In this perspective, we summarize the state-of-the-art quantum-chemical methods, as well as molecular- and quantum-dynamics tools successfully applied in ESIPT process studies, focusing on a critical comparison of their specific properties.  相似文献   

20.
Excited-state intramolecular proton transfer (ESIPT) is favored by researchers because of its unique optical properties. However, there are relatively few systematic studies on the effects of changing the electronegativity of atoms on the ESIPT process and photophysical properties. Therefore, we selected a series of benzoxazole isothiocyanate fluorescent dyes (2-HOB, 2-HSB, and 2-HSeB) by theoretical methods, and systematically studied the ESIPT process and photophysical properties by changing the electronegativity of chalcogen atoms. The calculated bond angle, bond length, energy gap, and infrared spectrum analysis show that the order of the strength of intramolecular hydrogen bonding of the three molecules is 2-HOB < 2-HSB < 2-HSeB. Correspondingly, the magnitude of the energy barrier of the potential energy curve is 2-HOB > 2-HSB > 2-HSeB. In addition, the calculated electronic spectrum shows that as the atomic electronegativity decreases, the emission spectrum has a redshift. Therefore, this work will offer certain theoretical guidance for the synthesis and application of new dyes based on ESIPT properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号