首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
频谱编码显微镜是用衍射光栅和光谱分析装置来获得显微图像.样品上不同的位置被不同的波长照明,通过对反射光光谱进行解码来得到空间信息.搭建了一个基于超连续光源和自制光谱仪的频谱编码显微成像系统,其横向分辨率为1.72±0.13μm(编码线方向)和1.26±0.08μm(垂直于编码线方向),测得不同横向位置处的轴向分辨率有差异.对离体猪肝组织不同部位进行了成像(可见血管、肝窦内皮细胞和肝细胞);对鸡心组织以10μm深度间隔进行成像,测得不同深度处结构信息不一样.结果表明,采用该频谱编码成像的方法能够进行高分辨的深度成像.  相似文献   

2.
In Optical Coherence Tomography (OCT), both high axial and lateral resolutions are desired. While axial (z-axis) resolution is achieved by a broadband source, lateral (x-y axes) resolution is achieved by high NA lenses. However, high NA objectives result in decreased depth of focus (DOF). The small DOF makes it difficult to obtain single shot imaging of biological samples having large lateral dimension. In this work we incorporate special interfering phase mask allowing to extend the DOF of an OCT system and to allow imaging of samples without axial scanning.  相似文献   

3.
In order to avoid the severe axial intensity oscillations which appear when an ideal Mathieu beam is truncated, we propose to modulate it by a flattened multi-Gaussian envelope. The obtained beam, which is referred as flattened Mathieu-Gauss (FTMG) beam, can be expanded into a finite series of Mathieu-Gauss beams with various waists. The propagation study of this beam reveals that the axial intensity is unchanged within a certain propagation distance as for super-Gaussian-Bessel beams or Gori’s flattened Bessel beams. By using Collins formula, we derive closed-form expressions of FTMG beam propagating through a paraxial axisymmetric ABCD optical system. Some numerical calculations and discussions are also given.  相似文献   

4.
Generation of longitudinally polarized focusing twin Bessel beams in focal region of a high numerical aperture (NA) objective is described based on circular Dammann gratings for radially polarized Bessel–Gauss input fields. Numerical simulations show that, under focusing of an objective of NA=0.95, the depth of focus (DOF) of the focused twin Bessel beams can reach as long as tens or even ~102 of wavelengths while its average transverse spot over the whole range of the DOF is kept subdiffration-limited. At the same time, the longitudinal polarization purity in focus volume is higher than 90% for the central lobe. Therefore, this tightly focused non-diffracting field should be of great interest for applications in numerous areas, such as particle acceleration and manipulation, micromachining, second-harmonic generation, Raman spectroscopy, etc.  相似文献   

5.
Pan Y  Xie H  Fedder GK 《Optics letters》2001,26(24):1966-1968
An endoscopic optical coherence tomography (OCT) system based on a microelectromechanical mirror to facilitate lateral light scanning is described. The front-view OCT scope, adapted to the instrument channel of a commercial endoscopic sheath, allows real-time cross-sectional imaging of living biological tissue via direct endoscopic visual guidance. The transverse and axial resolutions of the OCT scope are roughly 20 and 10.2mum, respectively. Cross-sectional images of 500x1000 pixels covering an area of 2.9 mmx2.8 mm can be acquired at ~5 frames/s and with nearly 100-dB dynamic range. Applications in thickness measurement and bladder tissue imaging are demonstrated.  相似文献   

6.
Single integral approximate formulas have been derived for the axial and lateral pressure magnitudes in the beam pattern of steady state unfocused circular flat piston sources radiating into nonattenuating and attenuating fluids. The nonattenuating formulas are shown to be highly accurate at shallow beam depths if a normalized form of the beam pattern is utilized. The axial depth of the beginning of the nonattenuated beam pattern far field is found to be at 6.41Y0. It is demonstrated that the nonattenuated lateral beam profile is represented at this and deeper depths by a Jinc function directivity term. Values of alpha and z are found that permit the attenuated axial pressure to be represented by a plane wave multiplicative attenuation factor. This knowledge should aid in the experimental design of high accuracy attenuation measurements. The shifts in depth of the principal axial pressure maxima and minima due to fluid attenuation are derived. Single integral approximate equations for the attenuated full beam pattern pressure are presented using complex Bessel functions.  相似文献   

7.
We report the generation of femtosecond Bessel beams of conical half-angle 26 degrees using an axicon lens and a beam reduction imaging setup. The generated Bessel beams were applied to the micromachining of nanostructures in glass of length up to 100 μm. The effect of the incident pulse energy on the characteristics of the nano- structures was studied using optical microscopy.  相似文献   

8.
9.
Stimulated emission depletion (STED) microscopy has become a powerful imaging and localized excitation method, breaking the diffraction barrier for improved spatial resolution in cellular imaging, lithography, etc. Because of specimen‐induced aberrations and scattering distortion, it is a great challenge for STED to maintain consistent lateral resolution deep inside specimens. Here we report on deep imaging STED microscopy using a Gaussian beam for excitation and a hollow Bessel beam for depletion (GB‐STED). The proposed scheme shows an improved imaging depth of up to about 155 μm in a solid agarose sample, 115 μm in polydimethylsiloxane, and 100 μm in a phantom of gray matter in brain tissue with consistent super resolution, while standard STED microscopy shows a significantly reduced lateral resolution at the same imaging depth. The results indicate the excellent imaging penetration capability of GB‐STED, paving the way for deep tissue super‐resolution imaging and three‐dimensional precise laser fabrication.

  相似文献   


10.
We propose a nonlinear optical probe method to image the distribution of collagen fiber orientation in human tissue by measuring the polarization of collagen-induced second-harmonic-generation (SHG) light (SHG polarimetry). Depth-resolved SHG polarimetry, with a depth resolution of 14 μm, was used to evaluate the cross-sectional profile of collagen fiber orientation in Achilles tendon and dentin, revealing a characteristic distribution of collagen orientation along the depth direction. We evaluated the two-dimensional (2D) lateral distribution of collagen fiber orientation in back reticular dermis and anklebone by polarization-resolved SHG imaging, and confirmed an appreciable difference in the distribution profiles of the two samples. We further extended the method to a depth-resolved measurement of the three-dimensional (3D) distribution of collagen orientation in anklebone. The proposed system promises to be a powerful tool for in vivo measurement of collagen fiber orientation in human tissue.  相似文献   

11.
殷杰  陶超  刘晓峻 《物理学报》2015,64(9):98102-098102
光声成像兼具声学成像和光学成像两者的优点, 因而成为近十年来发展最迅速的生物医学成像技术之一. 本文介绍了光声成像的特点及其相对于广泛应用的光学成像技术和声学成像技术的优点; 其次, 解释了光声成像的成像原理, 在此基础上介绍了光声断层成像和光声显微镜这两种典型的光声成像方案, 并介绍了它们的技术特点; 然后, 介绍了光声成像对生物组织的生化特性、组织力学特性、血液流速分布、温度分布参数、微结构特性等多信息参量的提取能力, 及其在生物系统的结构成像、功能成像、代谢成像、分子成像、基因成像等多领域的应用; 最后, 展望了光声成像在生物医学领域的应用潜力并讨论了其局限性.  相似文献   

12.
In order to achieve a higher lateral resolution required for ultraprecision measurement of microstructural workpieces, phase-only pupil filtering differential confocal microscopy (PFDCM), a new approach is proposed based on the differential confocal microscopy (DCM), which uses a three-zone phase-only pupil filter with lateral super-resolution capability obtained through optimized design to change the distribution of DCM three-dimensional point spread function, so that the DCM lateral resolution is therefore significantly improved while its axial resolution is slightly improved. Preliminary experimental comparison and analyses indicate that, the lateral and axial resolutions of PFDCM are better than 0.2 μm and 2 nm, respectively, when wavelength of incidence laser beam , numerical aperture of measuring lens NA=0.85, and lateral spot size with a three-zone phase-only pupil filter GT=0.65. It is therefore concluded that PFDCM is a new approach to further improvement of lateral resolution in laser probe measurement systems.  相似文献   

13.
The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka   (where kk is the wave-number and aa the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study.  相似文献   

14.
The direct acceleration of electrons by using two crossed linearly polarized Bessel beams with equal frequency and amplitude in vacuum is studied and compared with the case of single linearly polarized Bessel beam. It is found that two zeroth- and first-order Bessel beams with π-rad phase difference have a nonvanishing longitudinal electric field on the z-axis, which can be maximized under certain conditions and used to accelerate electrons. Two crossed zeroth- and first-order Bessel beams have a larger maximum longitudinal electric field on the z-axis than that of a single first-order Bessel beam, and are suited for laser electron acceleration.  相似文献   

15.
The technique of -optical clearing of biological tissues- is aimed at improving the quality of visualization of structures hidden deep in tissue. In this study, we measured the diffusion coefficient of glucose in bovine skeletal muscle tissue by optical coherence tomography (OCT) in vitro and determined changes that took place in the imaging contrast of muscle fibers, the optical depth of coherent probing, and detection under the influence of aqueous 40% solution of glucose. It was shown that, within 90 min, when the depth of coherent probing increased by 14%, the contrast of OCT images increased fourfold and the depth of coherent detection of structural elements of the tissue increased by 2.4 times. The diffusion coefficient of glucose in the muscle tissue was (2.98 ± 0.94) × 10-6 cm2/s.  相似文献   

16.
用于频域光学相干层析成像的深度分辨色散补偿方法   总被引:4,自引:2,他引:2  
黄炳杰  步鹏  王向朝  南楠 《光学学报》2012,32(2):217002-212
提出一种深度分辨的色散补偿方法,用于增强频域光学相干层析成像的纵向分辨率。将频域光学相干层析成像采集的干涉谱信号傅里叶变换到空域,获取对应不同深度的干涉谱条纹相位,通过对其进行调整实现对被测样品不同深度处的色散的精确补偿。避免传统方法中采用统一色散系数进行色散补偿所带来的过补偿与欠补偿误差,可以有效消除色散引起的频域光学相干层析成像系统点扩展函数的展宽和扭曲。模拟和实验结果表明,基于深度分辨的色散补偿方法在样品的全深度探测范围内可以达到较佳的补偿效果,可有效提高光学相干层析成像系统的纵向分辨率。  相似文献   

17.
In laser applications, resolutions beyond the diffraction limit can be obtained with a thin film of strong optical nonlinear effect. The optical index of the silicon thin film is modified with the incident laser beam as a function of the local field intensity n(r)E2(r). For ultrathin films of thickness d?λ, the transmitted light through the film forms a profile of annular rings. Therefore, the device can be related to the realization of super-resolution with annular pupils. Theoretical analysis shows that the focused light spot appears significantly reduced in comparison with the diffraction limit that is determined by the laser wavelength and the numerical aperture of the converging lens. Analysis on the additional optical transfer function due to the thin film confirms that the resolving power is improved in the high spatial frequency region.  相似文献   

18.
We report a miniaturized resonant/non-resonant multi-fiber raster scanner that is paired with a gradient-index lens assembly to achieve a compact and flexible multifocal multiphoton endoscope capable of longitudinal parallel image acquisition. Multiphoton images are obtained simultaneously at three axial depths, separated by ≥4.8 μm, by incorporating three axially offset double clad optical fibers into the miniaturized scanner. The fabricated endoscope has an outer diameter of 3 mm, a rigid length of 4 cm, and acquires images at 4 frames/s per focal plane, with lateral and axial resolutions for two-photon imaging of 0.8 and 10 μm, respectively.  相似文献   

19.
Mathematical expressions for the acoustic scattering, instantaneous (linear), and time-averaged (nonlinear) forces resulting from the interaction of a new type of Bessel beam, termed here a first-order non-diffracting Bessel trigonometric beam (FOBTB) with a sphere, are derived. The beam is termed “trigonometric” because of the dependence of its phase on the cosine function. The FOBTB is regarded as a superposition of two equi-amplitude first-order Bessel vortex (helicoidal) beams having a unit positive and negative order (known also as topological charge), respectively. The FOBTB is non-diffracting, possesses an axial null, a geometric phase, and has an azimuthal phase that depends on cos(?±?0), where ?0 is an initial arbitrary phase angle. Beam rotation around its wave propagation axis can be achieved by varying ?0. The 3D directivity patterns are computed, and the resulting modifications of the scattering are illustrated for a rigid sphere centered on the beam's axis and immersed in water. Moreover, the backward and forward acoustic scattering by a sphere vanish for all frequencies. The present paper will shed light on the novel scattering properties of an acoustical FOBTB by a sphere that may be useful in particle manipulation and entrapment, non-destructive/medical imaging, and may be extended to other potentially useful applications in optics and electromagnetism.  相似文献   

20.
The axial intensity distribution of partially coherent modified Bessel–Gaussian (PCMBG) beams passing through an astigmatic lens with circular aperture is derived on the basis of Collins formula. The influences of truncation parameter δ and astigmatic coefficient α on the axial intensity distribution are presented. The research shows that the axial intensity changes with the variation of α, and twice focal switches have been found. Furthermore, the physical interpretation of the twice focal switches is given and is also illustrated by numerical calculations. It has been revealed that the existence of astigmatism and the effect of the truncation parameter are the two main reasons for the twice focal switches of PCMBG beams passing through an astigmatic lens with circular aperture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号