首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Ab initio quantum mechanical calculations have been performed to establish the potentials for alkyl-substituted polyhedral oligomeric silsesquioxane (POSS) monomers RxH8-x(SiO1.5)8. More specifically, we have examined the unsubstituted POSS (SiO1.5H)8 cage as well as linear and cyclic alkyl-substituted cages where one of the terminating hydrogen atoms is replaced by a hydrocarbon group, that is, R1H7(SiO1.5)8. The results for the minimum-energy configurations indicate that the presence of the linear hydrocarbon chains and cyclic intermediates have very little effect on the structure of the POSS cage. Although the POSS monomeric cage does influence the partial charges of the first few carbon atoms covalently bound to the POSS monomer, its effect on the structural properties of the alkyl chain is small. Differences arise, however, for cyclic alkyl substitutents bound to the POSS cage due to the repulsive interactions between the POSS cage and bulkier cyclic intermediates that result upon rotation of the Si-C-C-C dihedral angles. The interatomic potentials for these rotational, or torsional, terms need to be modified slightly in order to appropriately simulate sterically hindered substitutents on the cage. Our results suggest that combining an atomistic force field independently developed to describe silsesquioxanes with an independent atomistic model developed to describe hydrocarbon chains can be used in classical molecular simulation studies of most alkyl-silsesquioxanes. This avoids the need to develop specific force fields for each substituted POSS cage studied and opens up the possibility of using molecular simulation to probe the thermodynamic and structural properties of these unique nanoscale building blocks.  相似文献   

2.
Polymers having polyhedral oligomeric silsesquioxane (POSS) in the main chains are an important class of organic–inorganic hybrid materials. Despite the increasing attention to the POSS polymers, variation of the monomers is still limited. Herein, we have proposed side‐opening POSS (SO‐POSS) monomers. Platinum‐catalyzed hydrosilylation polymerization proceeded to produce polysiloxanes having SO‐POSS in the main chains. The obtained polysiloxanes showed good solubility, high thermal stability, high transparency, and tunable reflective index. In addition, cyclic compounds were obtained during the investigation of the polymerization, and were synthesized with high selectivity under the slightly diluted conditions. The obtained cyclic compounds showed high thermal stability due to the silsesquioxane backbone, and the high dispersibility as a filler in poly(methyl methacrylate) was demonstrated. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2243–2250  相似文献   

3.
光致抗蚀剂又称光刻胶,是微电子加工过程中的关键材料。多面体低聚倍半硅氧烷(POSS)是一种具有规则的笼型结构的聚合物增强材料,由POSS改性的聚合物实现了有机-无机纳米杂化,POSS刚性结构的引入阻碍了聚合物分子的运动,可以显著提高聚合物的玻璃化转变温度(Tg),降低聚合物的介电常数,提高聚合物的力学性能,也提高了含POSS光致抗蚀剂的耐蚀刻性。基于这些优点,含POSS的光刻胶材料得到广泛关注。本文对含POSS光刻胶的研究进展作了简要介绍。  相似文献   

4.
Polyhedral oligomeric silsesquioxane (POSS) particles are one of the smallest organosilica nano‐cage structures with high multifunctionality that show both organic and inorganic properties. Until now poly(POSS) structures have been synthesized from beginning with a methacryl‐POSS monomer in free‐radical mechanism with batch‐wise methods that use sacrificial templates or additional multisteps. This study introduces a novel one‐pot synthesis inside a continuous flow, double temperature zone microfluidic reactor where the methodology is based on dispersion polymerization. As a result, spherical monodisperse POSS microparticles were obtained and characterized to determine their morphology, surface chemical structure, and thermal behavior by SEM, FTIR, and TGA, respectively. These results were also compared and reported with the outcomes of batch‐wise synthesis. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1396–1403  相似文献   

5.
实验发现将2种POSS(多面体低聚倍半硅氧烷)单体氨苯基异丁基POSS和八异丁基POSS置于四氢呋喃搅拌加热后,原来不发光的POSS单体表现出较强的发光。为解释这个发光现象,我们对溶剂处理前后的POSS材料进行了结构和发光性能表征,通过1HNMR、29Si NMR及红外光谱等方法表征了POSS材料在THF中加热处理前后的结构,实验结果表明,这两种POSS在处理前后结构几乎没有变化,可以保持完整的笼状结构,但处理后的POSS分子1H NMR谱中含有少量的溶剂峰。FTIR结果也表明处理前后的POSS结构几乎不变;我们也通过XPS表征了处理后的POSS中Si原子的价态,结果表明其价态未发生变化。结合这两种POSS材料处理前后的发光性能以及结构表征结果,我们认为,这种发光现象可能与POSS的吸附效应有关,即溶剂分子进入POSS笼中,形成POSS/溶剂加合物,从而改变了原来的POSS的电子结构,使得相应的POSS材料出现发光现象。  相似文献   

6.
倍半硅氧烷改性环氧树脂的研究进展   总被引:1,自引:0,他引:1  
倍半硅氧烷是近年发展起来的一种分子水平的有机无机杂化材料。文章介绍了倍半硅氧烷的结构、合成以及笼型倍半硅氧烷(POSS)基高分子复合材料的结构及合成方法。倍半硅氧烷改性聚合物可以提高聚合物的热性能、阻燃性能和物理机械性能等。文章综述了倍半硅氧烷改性环氧树脂的研究进展。  相似文献   

7.
The thermal properties and morphological development of isothermally crystallized isotactic polypropylene (iPP) blended with nanostructured polyhedral oligomeric silsesquioxane (POSS) molecules at very small loading of POSS were studied with differential scanning calorimeter (DSC), thermal gravimetric analysis, dynamic mechanical analysis, polarized optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). The result of DSC indicated that the crystallization rate of iPP increases with the increase in POSS contents during crystallization; moreover, the melting temperature of iPP/POSS nanocomposites slightly decreases, while the heat of fusion increases with the addition of POSS molecules at melting and remelting traces. The storage modulus and thermal stability, respectively, remarkably decrease, while the glass transition temperature of isothermally crystallized iPP/POSS nanocomposites increases slightly with the increase in POSS contents. The morphologies results of WAXD and POM show that the POSS molecules form about 35 nm sized nanocrystals and aggregate to form thread‐like and network structure morphologies, respectively, in the molten state even when the POSS content is very small. These results, therefore, suggest that the interaction force between the POSS molecules should be larger than the force between POSS molecules and iPP matrix; however, those interactions depend on the chain length of functionalized substituents on the POSS cage. Therefore, the POSS molecules aggregate forming nanocrystals and act as an effective nucleating agent for iPP and influence the thermal properties of iPP/POSS nanocomposites due to the shorter chain length of functionalized substituents, methyl, on the POSS cage. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2122–2134, 2006  相似文献   

8.
The incorporation of both monofunctional and multifunctional polyhedral oligomeric silsesquioxane (POSS) derivatives into crosslinked resins has been conducted as a route to synthesize hybrid organic/inorganic nanocomposites. The central cores of POSS molecules contain an inorganic cage with (SiO1.5)n stoichiometry where n=8,10 and 12. Each Si atom is capped with one H or R function giving an organic outer shell surrounding the nanometer-sized inorganic inner cage. By including polymerizable functions on the R groups, a hybrid organic/inorganic macromer is obtained which can be copolymerized with organic monomers to create thermoplastic or thermoset systems. We have focused on incorporating POSS derivatives into crosslinking resins of the following types: (1) dicyclopentadiene (2) epoxies (3) vinyl esters (4) styrene-DVB (5) MMA/1,4-butane dimethacrylate (6) phenolics and (7) cyanate esters. One goal has been to determine if molecular dispersion of the POSS macromers has been achieved or if various degrees of aggregation occur during crosslinked resin formation. As network formation proceeds, a kinetic race between POSS molecular incorporation into the network versus phase separation into POSS-rich regions (which then polymerize) occurs. Ultimately, we hope to determine the effects of such microstructural features on properties. Combustion of these hybrids creates a SiO2-like surface layer that retards flame spread. Dynamic mechanical properties have been studied.  相似文献   

9.
Polyhedral oligomeric silsesquioxanes (POSS) are nanometer-size molecules suitable for the production of organic-inorganic nanocomposite materials. These organic-inorganic nano-building blocks show promise for enabling the production of polymeric materials of exceptional mechanical properties as well as novel composite materials. While the experimental studies of these materials have rapidly evolved in the past decade, their theoretical investigation is still in its infancy. Toward the validation of force fields for the molecular simulation of POSS-containing systems, we present the charge-transfer reactive (CTR) force field for the molecular simulation of polyhedral oligomeric silsesquioxane (POSS) molecules and compare the ability of this, and several force fields taken from the literature, to predict the thermophysical properties of POSS-containing systems. The literature force fields compared include the universal force field (UFF) and the COMPASS and Hybrid-COMPASS force fields. Predictions from molecular dynamics simulations of the structural parameters (unit cell vectors), melting temperature, and FT-IR spectra of crystals of POSS monomers are presented. The POSS monomers investigated are octahydride, octamethyl, and octapropyl POSS. Predicted quantities are compared to experimental results where available and provide molecular-level physical insight into several aspects of the behavior of POSS molecules. While all the force fields tested perform reasonably well, our results indicate that the Hybrid-COMPASS and CTR force fields predict structural properties that are in good agreement with experimental data.  相似文献   

10.
Compounds of the silsesquioxane type are attractive material precursors. High molecular weights and well-defined structures predestine them to create ceramics with a controlled composition at the molecular level. New molecular precursors of ceramic materials with the ratio of Si:Ge = 7:1 atoms were obtained. The influence of organic substituents on the thermal decomposition processes of germasilsesquioxanes was investigated. Some of the structures obtained are characterized by a high non-volatile residue after the thermal decomposition process. The introduction of the germanium atom to the structure of the silsesquioxane molecular cage reduces the thermal stability of the obtained structures.  相似文献   

11.
Poly(ethylene oxide)-b-polyhedral oligomeric silsesquioxane (PEO–POSS) mixed with lithium bis(trifluoromethanesulfonyl)imide salt is a nanostructured hybrid organic–inorganic block copolymer electrolyte that may enable lithium metal batteries. The synthesis and characteristics of three PEO–POSS block copolymer electrolytes which only differ by their POSS silica cage substituents (ethyl, isobutyl, and isooctyl) is reported. Changing the POSS monomer structure results in differences in both thermodynamics and ion transport. All three neat polymers exhibit lamellar morphologies. Adding salt results in the formation of a disordered window which closes and gives way to lamellae at higher salt concentrations. The width of disordered window decreases with increasing length of the POSS alkyl chain substituent from ethyl to isobutyl and is absent in the isooctyl sample. Rheological measurements demonstrate good mechanical rigidity when compared with similar all-organic block copolymers. While salt diffusion coefficient and current ratio are unaffected by substituent length, ionic conductivity increases as the length of the alkyl chain substituent decreases: the ethyl substituent is optimal for ion transport. This is surprising because conventional wisdom suggests that ion transport occurs primarily in the PEO-rich domains, that is, ion transport should be unaffected by substituent length after accounting for the minor change in conducting phase volume fraction. © 2020 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2020 © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 363–371  相似文献   

12.
Three different polyhedral oligomeric silsesquioxanes (POSS), trisilanolphenyl polyhedral oligomeric silsesquioxane (T‐POSS), octaaminophenyl polyhedral oligomeric silsesquioxanes (OAPS), and octaphenyl polyhedral oligomeric silsesquioxanes (OPS) were incorporated into phenolic resin (PR), respectively; PR/POSS composites were successfully prepared, and the properties of PR/POSS composites were studied. The limiting oxygen index (LOI), cone calorimeter, and thermal gravimetric analysis (TGA) were used for the estimation of flame retardancy and thermal stability. Oxyacetylene flame test and flexural strength test were used to study the ablative and mechanical properties of the PR/POSS composites. The results indicated that T‐POSS was more effective in improving the flame retardancy of PR than OAPS or OPS. Meanwhile, compared with pure PR, the second line ablation rates of PR/4% T‐POSS, PR/4% OAPS, and PR/4% OPS were significantly reduced by 53.3%, 61.9%, and 40.0%, respectively. In addition, the thermal stability and flexural strength of PR/4% T‐POSS were significantly higher than that of all other PR composites.  相似文献   

13.
Polyhedral oligomeric silsesquioxane (POSS) molecules when functionalized appropriately and dispersed in polymers show promise as monodisperse organic-inorganic hybrid nanocomposite materials characterized by superior mechanical properties. We report here molecular-simulation results for POSS-POSS radial distribution functions, potentials of mean force, and self-diffusion coefficients for POSS monomers dissolved in poly(dimethylsiloxane) in the temperature range of 300-1000 K. Our results demonstrate that it is possible to modulate the effective POSS-POSS interaction by increasing the temperature or by substituting the hydrogen atoms in the POSS monomer with methyl groups. In addition, our results indicate that the motion of POSS monomers dissolved in poly(dimethylsiloxane) follows a hopping mechanism.  相似文献   

14.
倍半硅氧烷作为催化剂载体硅胶表面结构与性能研究的模型,可以通过表征其表面反应性质来直观认识硅胶负载型催化剂的作用机制。过去几十年来,倍半硅氧烷的研究呈现飞跃式的发展态势,开发出许多新化合物和新合成方法,并在一些催化过程中得到应用。将倍半硅氧烷作为金属化合物的配体,极大地丰富了元素化学的内容。本文重点介绍了合成含金属笼型倍半硅氧烷的相关进展,同时介绍了含金属笼型倍半硅氧烷在聚合物材料应用中的研究。  相似文献   

15.
Liquid‐crystalline (LC) hybrid polymers with functionalized silsesquioxanes with various proportions of LC monomer were synthesized by the reaction of polyhedral oligomeric silsesquioxane (POSS) macromonomer with methacrylate monomer having an LC moiety under common free‐radical conditions. The obtained LC hybrid polymers were soluble in common solvents such as tetrahydrofuran, toluene, and chloroform, and their structures were characterized with Fourier transform infrared, 1H NMR, and 29Si NMR. The thermal stability of the hybrid polymers was increased with an increasing ratio of POSS moieties as the inorganic part. Because of the steric hindrance caused by the bulkiness of the POSS macromonomer, the number‐average molecular weight of the hybrid polymers gradually decreased as the molar percentage of POSS in the feed increased. Their liquid crystallinities were very dependent on the POSS segments of the hybrid polymers behaving as hard, compact components. The hybrid polymer with 90 mol % LC moiety (Cube‐LC90) showed liquid crystallinity, larger glass‐transition temperatures, and better stability with respect to the LC homopolymer. The results of differential scanning calorimetry and optical polarizing microscopy showed that Cube‐LC90 had a smectic‐mesophase‐like fine‐grained texture. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4035–4043, 2001  相似文献   

16.
笼形倍半硅氧烷(POSS)是基于化学键合作用而形成的分子内杂化体系,这种有着规整立体结构同时具有单纳米尺度的有机无机杂化分子引起了研究人员的广泛关注,独特的纳米笼形结构也为分子水平上改进高分子的科学研究提供了可能性.本文综述了多面体倍半硅氧烷(POSS)的结构、性能与合成方法,重点介绍了巯基POSS、金属杂化POSS、...  相似文献   

17.
Polyhedral oligomeric silsesquioxanes (POSS) are multifunctional molecules that can be employed as building blocks to develop nanocomposite materials whose mechanical properties often improve upon those of traditional polymeric materials. We report here molecular simulation results for the effective potential of mean force between octamethyl POSS monomers and between POSS monomers in which one methyl group has been substituted by a linear alkane chain of nine carbon atoms in liquid normal hexane at 300 and 400 K. The results are discussed and compared to available data for the effective interactions between octamethyl POSS monomers in normal hexadecane. Our results show that the effective short-ranged POSS-POSS attraction is significantly weaker in hexane than it is in hexadecane, perhaps explaining why normal hexane is often the solvent of choice for the preparation of POSS-containing materials. Additionally, we provide results for the radial distribution functions between selected sites in the POSS monomers that can be used both to understand the association between POSS monomers in solution and to parametrize coarse-grained simulation models. Such models will be used to study the formation of POSS-containing supramolecular structures such as lamellae or micelles that are currently not accessible by atomistic simulation and can be compared to experimental observations.  相似文献   

18.
We describe here the design and synthesis of the polyhedral oligomeric silsesquioxane (POSS)‐based dual‐functional molecular fillers for simultaneously lowering refractive indices and improving thermomechanical properties of conventional polymers. We prepared the composite films with poly(methyl methacrylate) and polystyrene containing the series of the POSS derivatives with the single functional unit for interacting with polymer chains and heptacyclopentyl substituents for creating exclusive volumes around the POSS core. From the measurements of refractive indices of polymer composites, it was revealed that all POSS fillers can lower the refractive index of the films. In addition, thermal stabilities and mechanical properties were enhanced by adding POSS fillers. The filler effect on the thermal properties can be explained by the structural features of POSS: The highly symmetrical structure of the silica cube should suppress thermal motions, resulting in the large enhancement of thermomechanical properties of polymer matrices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3583–3589  相似文献   

19.
The mechanical properties and fire resistance of vinyl ester resin (VER) composites containing cage‐shaped octaphenyl silsesquioxane (OPS), incompletely cage‐shaped phenyl silsesquioxane (PhT7POSS), and ladder‐shaped phenyl silsesquioxane (PPSQ) were investigated. The POSS structure and dispersion have a great influence on the mechanical properties, thermal stability, and decomposition process of VER composites. The bending strength at break and modulus of the VER‐POSS composites were enhanced obviously, especially for VER‐PPSQ composite and VER‐OPS composite, respectively. In addition, PhT7POSS‐based VER composites revealed the lower values of the peak heat release rate, total heat release, and total smoke release in cone calorimetry tests due to the formation of dense carbon/silica protective layers that acted as a barrier to heat and mass transfer. Moreover, the flame‐retardant mechanisms of condensed phase and gas phase were also investigated in detail. These results illustrate VERs modified by OPS, PhT7POSS, and PPSQ are providing an applicable method to fabricate the composites with excellent flame‐retardant and mechanical properties.  相似文献   

20.
Polyhedral oligomeric silsesquioxanes (POSS) are a class of well-defined organic–inorganic stereo molecules comprising inorganic Si O Si cores and peripheral organic moieties. Since they were first reported in 1946 by Scott et al., there have been a great number of investigations on the use of POSS macromers as the building blocks to access the organic–inorganic composites with polymers. In most of cases, monofunctional POSS macromers are employed and the linear hybrid polymers are obtained. Under this circumstance, POSS cages act as the side or end groups whereas the main chains of the polymers remain unchanged. Occasionally, octafunctional POSS macromers are involved, resulting in the generation of crosslinked (or network-like) hybrids. Recently, well-defined difunctional POSS macromers have increasingly provoked a considerable attention of investigators. From the synthetic methodology of POSS macromers to the approaches to introduce them into polymers, difunctional POSS macromers have the features quite different from mono- (or octa-) functional POSS. More importantly, the related organic–inorganic hybrids possess the different morphologies and properties. In the past years, there has been a rapid increase in the number of literatures on the studies on well-defined difunctional POSS and the related organic–inorganic hybrids. Nonetheless, the related review is lacking. In this contribution, we would summarize the recent progress in this regard, from the synthesis of POSS macromers, the approaches of introducing the POSS macromers into polymers to the correlation of morphologies with properties of the organic–inorganic hybrids. In addition, perspectives and challenges for the further advancement are envisaged and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号