首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Recently, the field of highly-ordered mesoporous and macroporous thin films coated onto solid electrode surfaces has begun to receive attention due to their great interest for electrochemical analysis. This review highlights the features of both electricallyconducting and non-conducting organized layers, which are applicable to designing electrochemical sensors, and the methods applied to construct these novel nanomaterials.We emphasize methods based on use of self-assembled colloidal templates (e.g., surfactants or nanoparticles), around which the materials of interest are formed. We then describe their basic electrochemical behavior and discuss their possible use as electrochemical sensors and biosensors, mostly in the particular case of structured metallic layers, functionalized mesoporous silica films, and some other continuous three-dimensional ordered porous structures.  相似文献   

2.
This review covers recent advances in the development of new designs of electrochemical sensors and biosensors that make use of electrode surfaces modification with carbon nanotubes. Applications based on carbon nanotubes-driven electrocatalytic effects, and the construction and analytical usefulness of new hybrid materials with polymers or other nanomaterials will be treated. Moreover, electrochemical detection using carbon nanotubes-modified electrodes as detecting systems in separation techniques such as high performance liquid chromatography (HPLC) or capillary electrophoresis (CE) will be also considered. Finally, the preparation of electrochemical biosensors, including enzyme electrodes, immunosensors and DNA biosensors, in which carbon nanotubes play a significant role in their sensing performance will be separately considered.  相似文献   

3.
Supramolecular redox-active assemblies on electrodes are of fundamental interest and can be used to create functioning devices such as sensors, biosensors, and bioreactors. The ability of redox-active films to mediate electron transfer reactions in 3-D dramatically increases the sensitivity with which target molecules can be determined. Metallopolyion hydrogel films immobilized on electrode surfaces exhibit many properties that are reminiscent of those shown by redox-active proteins. This review discusses the electrochemical properties and applications of such films, including mediating electron transfer between electrodes and oxidase enzymes. In addition, polyion-protein films grown layer by layer have certain advantages in device fabrication, including facilitating direct electron transfer for many proteins, mechanical stability, use of tiny amounts of protein, and control of film architecture. This review presents examples of iron heme proteins in films grown layer by layer by alternate electrostatic adsorption for catalytic reduction of hydrogen peroxide and trichloroacetic acid and for oxidation of styrene.  相似文献   

4.
MXenes are recently developed two-dimensional layered materials composed of early transition metal carbides and/or nitrides that provide unique characteristics for biosensor applications. This review presents the recent progress made on the usage and applications of MXenes in the field of electrochemical biosensors, including microfluidic biosensors and wearable microfluidic biosensors, and highlights the challenges with possible solutions and future needs. The multilayered configuration and high conductivity make these materials as an immobilization matrix for the biomolecule immobilization with activity retention and to be explored in the fabrication of electrochemical sensors, respectively. First, how the MXene nanocomposite as an electrode modifier affects the sensing performance of the electrochemical biosensors based on enzymes, aptamer/DNA, and immunoassays is well described. Second, recent developments in MXene nanocomposites as wearable biosensing platforms for the biomolecule detection are highlighted. This review pointed out the future concerns and directions for the use of MXene nanocomposites to fabricate advanced electrochemical biosensors with high sensitivity and selectivity. Specifically, possibilities for developing microfluidic electrochemical sensors and wearable electrochemical microfluidic sensors with integrated biomolecule detection are emphasized.  相似文献   

5.
《Electroanalysis》2006,18(4):319-326
The unique chemical and physical properties of nanoparticles make them extremely suitable for designing new and improved sensing devices, especially electrochemical sensors and biosensors. Many kinds of nanoparticles, such as metal, oxide and semiconductor nanoparticles have been used for constructing electrochemical sensors and biosensors, and these nanoparticles play different roles in different sensing systems. The important functions provided by nanoparticles include the immobilization of biomolecules, the catalysis of electrochemical reactions, the enhancement of electron transfer between electrode surfaces and proteins, labeling of biomolecules and even acting as reactant. This minireview addresses recent advances in nanoparticle‐based electrochemical sensors and biosensors, and summarizes the main functions of nanoparticles in these sensor systems.  相似文献   

6.
An electrochemical response of glucose and lactate biosensors which were prepared by coating a platinum electrode with a thin film composed of concanavalin A and mannose-labeled glucose oxidase (GOx) or lactate oxidase (LOx) was evaluated in the presence of ferrocene derivatives as electron mediator. Both glucose and lactate biosensors showed catalytic current to glucose and lactate, respectively, in cyclic voltammetry, suggesting that the ferrocene derivatives can mediate electron transport smoothly from the reduced forms of GOx and LOx in the thin films to the electrode. Among the three kinds of ferrocene derivatives used, ferrocenylmethanol was found to be the most suitable electron mediator because of its low oxidation potential. The glucose and lactate sensors gave useful calibration graphs, in which higher detection limits were reached as compared with those observed when the sensors were operated in the absence of electron mediator.  相似文献   

7.
This work presents a comparative study between two different methods for the preparation of mediator-modified screen-printed electrodes, to be used as detectors in a reliable flow injection system for the determination of the nicotinamide adenine dinucleotide (NADH) coenzyme. The best strategy was selected for the final development of compact biosensors based on dehydrogenase enzymes. For the first immobilisation strategy, different redox mediators were electropolymerised onto the SPE surface. The second immobilisation strategy was carried out using polysulfone–graphite composites, which were deposited by screen-printing technology onto the screen-printed electrode (SPE) surface. Both methods achieved an effective and reliable incorporation of redox mediators to the SPE configuration. Finally, a flow system for ammonium determination was developed using a glutamate dehydrogenase (GlDH)-Meldola's Blue (MB)-polysulfone-composite film-based biosensor.

The stability of the redox mediators inside the composite films as well as the negligible fouling effect observed on the electrode surface improve the repeatability and reproducibility of the sensors, important features for continuous analysis in flow systems. Furthermore, the optimised bio/sensors, incorporated in a flow injection system, showed good sensitivities and short response times. Such a good analytical performance together with the simple and fast sensor construction are interesting characteristics to consider the polysulfone-composite films as attractive electrochemical transducer materials for the development of new dehydrogenase-based SPEs.  相似文献   


8.
基于特殊DNA序列的构型变化的电化学生物传感器是一种高灵敏、高特异性的生物分析方法.固定在电极表面的特殊DNA探针(茎环、核酸适配体、四聚体等)因为目标物质的结合而发生构型变化,从而产生可检测的电化学信号,这种策略操作简便而且特异性强,引起了研究者的广泛关注.本文总结了目前基于基因构型变化的电化学生物传感器的发展历程.  相似文献   

9.
《Analytical letters》2012,45(17):2786-2798
Prussian blue has significant application for the construction of electrochemical biosensors. In this work, Prussian blue-reduced graphene oxide modified glass carbon electrodes were successfully fabricated using electrochemical deposition. The high surface area of graphene oxide enhanced the deposition of Prussian blue and the resulting electrocatalytic activity. Infrared spectroscopy and scanning electron microscopy showed that the relatively porous Prussian blue was on the surface of reduced graphene oxide. Cyclic voltammetry showed that Prussian blue-coated reduced graphene oxide composite films improved electron transfer compared to Prussian blue films. The Prussian blue-reduced graphene oxide composite film provided higher response for the reduction of hydrogen peroxide and the oxidation of dopamine compared with the Prussian blue film due to synergistic effects between the reduced graphene oxide and Prussian blue particles. The sensitivity of the electrode was 0.1617 µA µM?1 cm?2. The linear dynamic range extended from 0.5 µM to 0.7 mM dopamine with a limit of detection equal to 125 nM. This work provided a versatile strategy for the design and construction of sensitive amperometric sensors with robust electrocatalytic behavior.  相似文献   

10.
《Electroanalysis》2006,18(2):163-168
Nanostructured films were deposited at the surface of working electrode of the screen‐printed assembly and utilized for the surface modification with double‐stranded DNA. The basic electrochemical properties of the sensors were investigated using voltammetric methods. Modified electrodes were also characterized by scanning electron microscopy and electrochemical impedance measurements. It was found that the electrode modification with DNA and nanomodifier leads to an enhanced sensitivity of the DNA voltammetric detection. New potentialities of the utilization of the K3[Fe(CN)6] cyclic voltammetric signal and electrochemical impedance spectroscopy were found. The DNA‐based biosensors showed good repeability and necessary stability within several days.  相似文献   

11.
The phenazine monomers neutral red (NR) and methylene blue (MB) have been electropolymerised on different quartz crystal microbalance (QCM) substrates: MB at AuQCM and nanostructured ultrathin sputtered carbon AuQCM (AuQCM/C), and NR on AuQCM and on layer-by-layer films of hyaluronic acid with myoglobin deposited on AuQCM (AuQCM-{HA/Mb}(6)). The surface of the electrode substrates was characterised by atomic force microscopy (AFM), and the frequency changes during potential cycling electropolymerisation of the monomer were monitored by the QCM. The study investigates how the monomer chemical structure together with the electrode morphology and surface structure can influence the electropolymerisation process and the electrochemical properties of the phenazine-modified electrodes. Differences between MB and NR polymerisation, as well as between the different substrates were found. The electrochemical properties of the PNR-modified electrodes were analysed by cyclic voltammetry and electrochemical impedance spectroscopy and compared with the unmodified AuQCM. The results are valuable for future applications of modified AuQCM as substrates for electroactive polymer film deposition and applications in redox-mediated electrochemical sensors and biosensors.  相似文献   

12.
Combining hydrogels sensitive to external stimuli with conducting surfaces opens new possibilities in electrochemistry. Thin hydrogel layers as unique electrode-modifying materials provide highly permeable matrix for easy diffusion of analytes. In addition, larger individuals, for example, nanoparticles and enzymes, can be straightforwardly immobilized in the polymeric networks at electrode surfaces. Such properties are strongly desired for construction of sensors and biosensors. In addition, sensitivity to external stimuli allows to significantly enhance or weaken the electroanalytical signal. Recently, a significant number of articles concerning switchable sensors/biosensors, switchable electrochemical systems and signal–responsive interfaces have been published. This report is also focused on the construction of various devices based on electrode surfaces modified with smart hydrogel layers, for example, logic gates and electroresponsive hydrogel layers as potentially advanced drug delivery systems, artificial muscles and electrochemical valves.  相似文献   

13.
《Electroanalysis》2006,18(18):1737-1748
Layer‐by‐layer (LBL) assemblies, which have undergone great progress in the past decades, have been used widely in the construction of electrochemical biosensors. The LBL assemblies provide a strategy to rationally design the properties of immobilized films and enhance the performance of biosensors. The following review focuses on the application of LBL assembly technique on electrochemical enzyme biosensors, immunosensors and DNA sensors.  相似文献   

14.
柔性生物传感器在可穿戴电子设备中有着广泛的应用前景. 为了获得柔性电化学多巴胺传感器,作者在本工作中首先在镍泡沫表面通过化学气相沉积生长石墨烯,随后通过高温碳化嵌段共聚物与酚醛树脂在石墨烯表面共组装形成的薄膜制备了有序介孔碳/石墨烯/镍泡沫(OMC/G/Ni)复合材料. 其中,镍泡沫可以为复合材料提供具有高导电性和良好柔韧性的金属骨架,而具有垂直排列介孔阵列的有序介孔碳层为复合材料提供了高的电活性表面积,且有利于活性位点的暴露. 值得注意的是,夹在有序介孔碳层和镍泡沫之间的石墨烯极大地增强了各组分之间的相容性,有利于进一步提升复合材料的电化学性能. 作为电化学传感器中的工作电极,OMC/G/Ni体现出优异的多巴胺检测能力. 不但具有宽的线性检测范围(0.05 ~ 58.75 μmol·L-1)和低检测限(0.019 μmol·L-1),还具有良好的选择性、重现性和稳定性. 此外,OMC/G/Ni在弯曲状态下依旧能够保持对多巴胺的高检测能力,证明了其在柔性生物传感器中的应用潜力.  相似文献   

15.
Sol-gel chemistry provides a route to preparing inorganic polymers with ionically conducting properties by room temperature synthetic routes. The products, which are rigid solids, are well-suited as media for conventional electrochemical techniques such as cyclic voltammetry. This property, when combined with their ability to host a wide variety of species, has allowed development of a variety of devices of interest in electrochemistry and analytical chemistry. Examples include cathodes for fuels cells, electrochromic devices, biosensors, and amperometric sensors for analytes in the gas phase. In this review, the emphasis will be on reported applications to analytical chemistry; however, studies on the general properties of these materials and on their use in electrochemical science also will be summarized because they may provide the basis for further development of sensors.  相似文献   

16.
Cell-based biosensors, bioelectronic portable devices containing plant living cells have been used for monitoring some physiological changes induced by pathogen-derived signal molecules called flagellin. The screen-printed electrodes have been adapted for preparation of biosensors. The proton-sensitive thick films have been printed using composite bulk modified with edition of RuO(2). Obtained disposable electrodes were made possible to measure the pH change with well sensitivity and reproducibility. Tobacco cells attached to the electrode surface, cell-based biosensor, can be used for the detection of flagellin, the virulence factor of bacterial pathogen. We culture tobacco cells on the surface of such electrotransducer for several weeks and monitor of potential of cells under flagellin stimulation. The detection of the electrochemical proton gradient across the plasma membrane serves as the analytical signal. The electrode response depended upon H(+) concentration in extracellular solution. It can be conveniently observed on the surfaces of biosensors. Suitable stability and the good response time of constructed biosensors were observed. Future development of these cell-based biosensors could draw advances in selective monitoring of microbial pathogens and other physiologically active components. Moreover, this new method is much faster compared with the traditional microbial testing.  相似文献   

17.
Jing Wang 《Mikrochimica acta》2012,177(3-4):245-270
The interest in the fabrication of electrochemical biosensors with high sensitivity, selectivity and efficiency is rapidly growing. In recent years, noble metal nanoparticles (NMNPs), with extraordinary conductivity, large surface-to-volume ratio and biocompatibility, have been extensively employed for developing novel electrochemical sensing platforms and improving their performances. Through distinct surface modification strategies (e.g. self-assembly, layer-by-layer, hybridization and sol-gel technology), NMNPs provide well control over the microenvironment of biological molecules retaining their activity, and facilitate the electron transfer between the redox center of biomolecules and electrode surface. Moreover, NMNPs have been involved into biorecognition events (e.g. immunoreactions, DNA hybridization and ligand-receptor interactions) by conjugating with various biomolecules, chemical labels and other nanomaterials, achieving the signal transduction and amplification. The aim of this review is to summarize different strategies for NMNP-based signal amplification, as well as to provide a snapshot of recent advances in the design of electrochemical biosensing platforms, including enzyme/protein sensors focused on their direct electrochemistry on NMNP-modified electrode surface; immunosensors and gene sensors in which NMNPs not only participate into biorecognition, but also act as electroactive tags to enhance the signal output. In addition, NMNP alloy-based multifunctional electrochemical biosensors are briefly introduced in terms of their unique heterostructures and properties.
Figure
With the co-modification of hemoglobin and multi-layers of gold nanoparticles onto the gold electrode surface, gold nanoparticles facilitate the electron transfer between hemoglobin and electrode. As a result, the direct electrochemistry of hemoglobin could be obtained.  相似文献   

18.
《Analytical letters》2012,45(8):783-803
Recent trends and challenges in developing carbon nanotubes (CNT) based sensors and biosensors for the detection of organophosphate (OP) pesticides and other organic pollutants in water are reviewed. CNT have superior electrical, mechanical, chemical, and structural properties over conventional materials such as graphite. At the same time CNT based sensors and biosensors are more efficient compared to the existing traditional techniques such as high-performance liquid chromatography or gas chromatography, because they can provide rapid, sensitive, simple, and low-cost on-field detection. The measurement protocols can be based on enzymatic and non-enzymatic detection. The enzyme acetylcholinesterase (AChE) is used with CNT for fabricating ultrasensitive biosensors for OP detection involving different immobilization schemes such as adsorption, crosslinking, and layer-by-layer self-assembly. This protocol relies on measuring the degree of enzyme inhibition as means of OP quantification. The other enzyme used along with CNT for OP detection is organophosphate hydrolase (OPH) which hydrolyzes the OP into detectable species that can be measured by amperometric or potentiometric methods. Different forms of CNT electrode materials can be used for fabricating such electrodes such as pure CNT and composite CNT. Due to their large surface area and hydrophobicity, CNT have also been used for the extraction and non-enzymatic electrochemical detection of OP with very high efficiency. The application of CNT and their novel properties for the adsorption and electrochemical detection of OP compounds is discussed in detail.  相似文献   

19.
黎振华  诸颖  陈静  宋世平 《应用化学》2022,39(5):736-748
电化学生物传感器具有灵敏度高、便携性好、响应快速和易于集成等优点,在临床检测方面有很大应用潜力,并在可穿戴健康监测领域得到了快速发展。但在实际临床生物样本检测中,非靶标生物物质会在电极表面产生非特异性吸附(即生物污染),影响了电化学生物传感器的性能。因此,构建具有防污染能力的传感界面(抗污界面),防止非靶标物质吸附到电极表面,对于扩大电化学生物传感器的实际应用范围,实现在复杂生物样本中的检测至关重要。本文概述了物理、化学和生物抗污电极界面的构建及其在临床相关生物标志物检测中的应用,为电化学生物传感器实际应用性能的提升提供技术参考,并通过对界面抗污原理和存在问题的探讨,对抗污界面发展前景和未来趋势予以展望。  相似文献   

20.
Synthesis of carboxyl functionalized polyaniline (PANI) (polyanthranilic acid PANA) is reported based on our recent studies using various oxidizing agents. PANA was synthesized in acidic medium using ammonium peroxodisulfate, hydrogen peroxide, and potassium permanganate as oxidizing agents and their structural, electrochemical, and electrical properties are studied. A comparative study among the polymers formed by various oxidizing agents and also with PANI is made. Various possible oxidation states of PANA are discussed, with the help of electrochemical data. A composite of PANA and polyvinyl chloride (PVC) containing 20% PVC by weight is synthesized and used for the development of solid state pH electrode. The composite was synthesized to improve mechanical strength, stability, and restrict solubility. The pH sensor response is found to be reversible and linear in the pH range 1–7. PANA and PVC (20 wt%) based pH sensors show potential applications in development of pH transducers based sensors/biosensors. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号