首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vickers indentations were performed on silica optical fibers subjected to water interaction by a hydrothermal treatment. The observation of the Vickers impression provided direct evidence of a piling-up of material of the fiber submitted to the hydrothermal treatment. This indentation behavior is consistent with a structural relaxation promoted by the water and the glass network interaction. It is suggested that the water could act as a modifier since the deformation combines the densification and the shear flow of the material. When the relaxed surface layer is chemically etched, the anomalous behavior of silica under indentation is restored as the deformation is controlled only by densification. The chemical etched samples exhibited an increase in hardness.  相似文献   

2.
3.
Abstract

The densification mechanism of borosilicate glass, silica gel and amorphous titania powders by hydrothermal hot-pressing is described. The glass powders were densified by a viscous flow mechanism, and fully dedfied compacts were obtained by hydrothermal hot-pressing. On the other hand, porous ceramics were produced from silica gel and amorphous titania. The pore size distribution of these ceramics could be controlled by hydrothermal hot-pressing conditions. In the case of silica gel, it remained amorphous, but amorphous titaaia was crystallized to anatase by hydrothermal hot-pressing. The pore diameter and mechanical strength of the compacts prepared from silica gel increased with reaction time. The densification of the amorphous titania was improved by increasing temperature and pressure.  相似文献   

4.
The surface hardness of polished and HF etched fused silica has been investigated by nanoindentation technique. The results of polished fused silica indicate that the hardness of surface layer is greater than that of the bulk material. The difference should be attributed to the polishing induced deformation of the thin surface layer. The various removal depths of surface layer by HF etching has been confirmed by the surface hardness results. The initial laser damage threshold and damage possibility of unetched and etched samples were also measured. The results show a great improvement of damage resistance by slight etching and a reduction by excess etching. The correlation between surface hardness and damage threshold indicates that the mechanical strength plays an important role in the initiation of laser-induced damage.  相似文献   

5.
The damage response of columnar multilayers of TiN and AlTiN to Vickers indentation is studied through focused ion beam machining and elastic modelling. Multilayers display an enhanced resistance, which increases with layer refinement, to the multiple fracture modes that appear at high loads in these materials, including edge (nested) cracks and inclined shear cracks. Measurements of layer thickness reveal that multilayers display additional modes of plastic deformation that lead to permanent compression and bending of the film. An elastic model of contact deformation in a bilayer where plasticity is mimicked by greatly enhanced elastic compliance of the film is used to rationalize the trends in crack resistance. It is shown that the enhanced toughness is not due to any increase in the strain capacity (hardness/modulus) of the film material, brought about by multilayering.  相似文献   

6.
本文研究了经局部塑性变形后, Fe78Si9B13金属玻璃在原子尺度上的结构演变及其对合金显微硬度的影响.借助砂纸作为传力的媒介,充分放大了作用于带材表面上的等效压力,发生塑性变形后合金表面产生了大量的剪切带.基于倒空间和实空间的同步辐射X射线衍射分析,在塑性变形后,合金结构的致密度增大,过剩自由体积被排出,并由此揭示了Fe78Si9B13金属玻璃在短程及中程尺度上原子协同重排行为.结合高分辨透射电子显微镜观察的结果, Fe78Si9B13金属玻璃在发生塑性变形后,结构不均匀的程度将会加剧.此外,不同于单轴加载下金属玻璃的加工软化, Fe78Si9B13金属玻璃在发生局部塑性变形后,维氏硬度增大,表现出局部的加工硬化行为.从自由体积的角度看,合金表面的大量剪切带可能是由于剪切带影响区域的重叠和交叉发生相互作用,并加速原子迁移,...  相似文献   

7.
To explore further the influencing of mechanical effects on laser machining in the liquid, in the process of great-energy and short-pulsed laser irradiating matter in the liquid, the experiments of 248 nm laser etching n-Si under water were carried out. The removal mechanism of brittle material etched by mechanical effects, which is induced during high-energy and short-pulsed laser machining in the liquid, was discussed. In the paper, the approximate mechanics model of indentation fracture was used to analyze the mechanical effects for removing brittle materials of silicon when laser machining in the liquid. Based on this, a theoretical model of material removal rate was proposed; the experiment of laser machining under water was adopted to validate the model. The experimental results indicate that the removal rate of brittle material caused by shock forces is relatively great.  相似文献   

8.
Micro-hardness and scratch adhesion testing are the most commonly used techniques for assessing the mechanical properties of thin films. Both of these testing methods utilize single-point contact and induce plastic deformation in the substrate and film. However, the influence of adhesion on the measured hardness has been seldom reported so far. In our experiments, diamond-like carbon (DLC) and silicon carbide (SiC) films deposited on silicon and nickel-based alloy substrates by pulsed laser ablation were indented and scratched by a Vickers micro-hardness tester and a diamond-cutter, respectively. It was found that the composite hardness decreased more rapidly for poor adhesion when increasing the indentation load. The result was explained by the elastic-plastic deformation mode of indentation and helped us to understand the physical meaning of one parameter commonly introduced in the models used to separate film hardness from the composite hardness. Received 30 June 1998  相似文献   

9.
The effect of repeated cycles of water adsorption/desorption on the structural stability of ordered mesoporous silica SBA-15 is studied by small-angle x-ray scattering (SAXS). In?situ sorption measurements are conducted using a custom-built sorption apparatus in connection with a laboratory SAXS setup. Two striking irreversible changes are observed in the sorption isotherms as derived from the integrated SAXS intensity. First, the capillary condensation pressure shifts progressively to lower relative pressure values with increasing number of sorption cycles. This effect is attributed to chemisorption of water at the silica walls, resulting in a change of the fluid-wall interaction. Second, the sorption cycles do not close completely at vanishing vapour pressure, suggesting that progressively more water remains trapped within the porous material after each cycle. This effect is interpreted to be the result of an irreversible collapse of parts of mesopores, originating from pore wall deformation due to the large Laplace pressure of water acting on the pore walls at capillary condensation and capillary evaporation.  相似文献   

10.
In this article the effects induced by exposure of sol–gel thin films to hard X‐rays have been studied. Thin films of silica and hybrid organic–inorganic silica have been prepared via dip‐coating and the materials were exposed immediately after preparation to an intense source of light of several keV generated by a synchrotron source. The samples were exposed to increasing doses and the effects of the radiation have been evaluated by Fourier transform infrared spectroscopy, spectroscopic ellipsometry and atomic force microscopy. The X‐ray beam induces a significant densification on the silica films without producing any degradation such as cracks, flaws or delamination at the interface. The densification is accompanied by a decrease in thickness and an increase in refractive index both in the pure silica and in the hybrid films. The effect on the hybrid material is to induce densification through reaction of silanol groups but also removal of the organic groups, which are covalently bonded to silicon via Si—C bonds. At the highest exposure dose the removal of the organic groups is complete and the film becomes pure silica. Hard X‐rays can be used as an efficient and direct writing tool to pattern coating layers of different types of compositions.  相似文献   

11.
The creep properties of an amorphous thermoplastic polyamideimide and its continuous carbon fiber composite have been investigated. Creep behavior in the viscoelastic (low stress) and viscoplastic (high stress) ranges was examined. The interaction of physical aging with the creep behavior of the material was found to be significant in both stress regimens. Physical aging shifted creep curves to longer times in the viscoelastic range, reducing the total amount of creep strain in both the viscoelastic and viscoplastic ranges. The amount of nonrecoverable strain produced during viscoplastic creep was highly dependent upon the amount of time a sample was held under load due to concurrent physical aging. Specimens aged significantly prior to testing showed no undue time dependence in the amount of nonrecoverable creep strain produced. The viscoplastic creep behavior was shown to be composed of instantaneous localized plastic deformation, viscous strain, stiffening due to aging, and densification due to aging.  相似文献   

12.
Herein, porous hollow silica nanospheres were prepared via a facile sol-gel process in an inverse microemulsion, using self-assemblies of chiral amphiphile as a soft template and fine water droplets as a hard template. The shells of the hollow silica nanospheres are composed of flake-like nanoparticles with dense big holes on the surface. After covering a layer of sulfur on the silica nanospheres, followed by hydrothermal treatment in a D-glucose aqueous solution, silica-sulfur and silica-sulfur-carbon nanospheres were successfully fabricated. The silica-sulfur composites exhibit a stable capacity of 454 mAh g?1 at current density of 335 mA g?1 after 100 cycles with capacity retention of 85%, demonstrating a promising cathode material for rechargeable lithium-sulfur batteries. We believe that the approach for synthesis of porous hollow silica nanospheres and its carbon spheroidal shell can also be applicable for designing other electrode materials for energy storage.  相似文献   

13.
Abstract

A new process for porous silica production has been developed using a hydrothermal method. Hydrothermally synthesized calcium silicate was used as the starting material in this study, which was produced from a mixture of Ca(OH)2 and amorphous silica (white carbon) under hydrothermal conditions of 140°C and 0.4 MPa, for 8 hours. The calcium silicate was subsequently treated with an acid solution, facilitating the leaching of Ca ions. After washing with pure water, the multant Ca2+ -free silica powder was allowed to dry. The Ca2+ -free silica powder was found to have an amorphous structure, with 0.9 ml/g pore volume, up to 610m2/g BET specific surface area, and an average 5 ~ 8 nm pore size. Our hydrothermal process is simple and low cost, and is anticipated to have numerous applications to the petrochemical industry.  相似文献   

14.
The deformation surrounding Vickers indentations on InGaAsP/InP epilayers have been studied in detail. The surface topography was characterized by using atomic force microscopy (AFM). The material pile-up and sink-in regions around the indentation impression was observed for the quaternary InGaAsP/InP epilayers. The sectional analysis mode of the AFM shows the depth profile at the indented region. Microindentation studies were carried out for different atomic fraction of the quaternary InGaAsP/InP compound semiconductor alloys. The microhardness values of InGaAsP/InP epilayers were found to be in the range of 5.08 and 5.73 GPa. These results show that the hardness value of the quaternary alloy drastically increases as the composition of As was increased by 0.01 atomic fraction and when the phosphorous concentration decreases from 0.4 to 0.38. The reason may be that the increase in As concentration hardens the lattice when phosphorous concentration was less and hardness decreases when phosphorous was increased.  相似文献   

15.
ABSTRACT

The indentation of a metal specimen by a narrow-angle wedge produces extreme plastic deformation, with an effect akin to cutting into the metal. Simulation of such processes is challenging, and complicated by the need to model material separation along the indentation symmetry axis. Here we use an Arbitrary Lagrangian Eulerian (ALE) framework to enforce the symmetry boundary conditions (bcs) in their original, `strong’ form, as well as conventional Lagrangian FE to impose the bcs in a complementary, `weak’ form. Taken together these two cases, representing perfectly strong and perfectly weak interfaces, produce accurate bounds on the mechanical response for indentation by wedges with semi-apical angles as small as 15 degrees, and encompass intermediate cases that would require complicated models of ductile failure. The method accurately predicts the transition from the cutting pattern to the non-cutting (radially compressive) pattern as the apical angle is increased. In combination with Lagrangian particle tracking, the simulations reveal the deformation pattern as well as strain, strain-rate, and velocity fields in narrow angle indentation at high resolution. Interestingly, the strong form predicts a thin (tens of microns), near-wall layer of intense plastic strain, which has been observed recently in indentation experiments. With the exception of this feature, the strong and weak bc solutions are quite similar. The present approach reveals insights about plastic flow past narrow obstacles in a range of related problems including cone penetration and machining, and suggests using narrow-angle indentation as a way to probe material failure.  相似文献   

16.
Meng Fei Wong 《哲学杂志》2013,93(13):1685-1700
The elastic–plastic deformation behavior of (001)- and (011)-oriented single crystal solid solutions of Pb(Zn1/3Nb2/3)O3–(6–7)% PbTiO3 (PZN–PT) have been studied using a nanoindentation technique. A procedure is presented here to isolate the elastic, elastic–plastic and plastic contributions to the deformation using the unloading data, and a parameter, referred to as relaxation, is defined to characterize the elastic–plastic deformation during nanoindentations. This relaxation parameter increases with the maximum indentation load due to the higher indentation stress induced, and it also causes less recovery of the material upon indentation unloading compared to predicted pure elastic recovery. For a (001) surface, the relaxation value remains virtually unchanged within the range of the maximum indentation load of 10–50 mN, possibly due to a complete localized depoling of the non-180° domain switching. It is also found that the unpoled surface is more prone to stress-induced depolarization compared to the poled surfaces. Furthermore, by applying the continuous stiffness measurement (CSM) technique, the effects of multiple loading/unloading are studied for both (001)- and (011)-oriented PZN–PTs using the maximum indentation loads of 20 and 50 mN. With more loading/unloading cycles at higher CSM frequencies, stress-induced depolarization becomes prevalent and the contribution of the domain reorientation towards elastic recovery is significantly reduced. As a consequence, the relaxation value is increased, indicating more elastic–plastic deformation. This CSM effect is especially pronounced for poled (011) surfaces.  相似文献   

17.
W. Z. Yao  J. H. You 《哲学杂志》2013,93(17):1418-1435
Abstract

In this paper, it was investigated whether Berkovich indentation test with a triangular-based pyramidal imprint would exhibit the same surface pile-up deformation behaviour as in Vickers or spherical indentation tests. The characteristic correlation between the pile-up patterns of monocrystalline tungsten and the geometry of slip systems was examined both experimentally and computationally. Surface pile-up patterns for three different crystallographic orientations of specimens with corresponding rotational crystal symmetry were characterised. In addition, the effect of the varying azimuthal orientation of the indenter on the pile-up patterns was also discussed. Predictions from finite element simulation based on the crystal plasticity theory are also presented and compared with the measured results. It was found that the surface pile-up patterns of Berkovich indentation did not necessarily reflect the rotational crystal symmetry of tungsten single crystal specimens. The pile-up patterns were affected by the variation of the indenter’s azimuthal orientation. The height of the pile-up hillocks was often highly non-uniform even on the same surface plane indicating strong influence of slip geometry leading to the plastic anisotropy.  相似文献   

18.
A synthetic route was developed for a novel hexagonal mesoporous silica that has remarkably wide channel diameters and thick walls. The procedure involved the acid-catalyzed hydrolysis of tetraethylorthosilicate in a water/ethanol/isopropoanol solvent mixture while employing 1-hexadecylamine as a templating agent and mesitylene as an auxiliary agent. After removal of the template by either extraction with ethanolic hydrochloric acid or by calcination at 550 °C, the resulting mesoporous materials had surface areas of 1283 and 1211 m2/g. The channel diameters were found to be 47.2-51.1 Å, while the wall thicknesses were 20.9-21.1 Å. X-ray powder diffraction demonstrated that the novel mesoporous silica belonged to the MCM-41 structural family. Notably, they displayed higher thermal and hydrothermal stabilities, and have higher surface areas than conventionally prepared MCM-41 silica. The thickest channel walls (21.1 Å) can withstand calcination to nearly 850 °C with minimal structural damage. The calcined sample was more resistant to hydrothermal treatment in boiling water than was the solvent-extracted product but both materials showed minimal change after 25 h of hydrothermal treatment.  相似文献   

19.
The images of Vickers indentations in titanium are obtained by photoacoustic microscopy with piezoelectric-signal detection. It is shown that the analysis of the photoacoustic-image features makes it possible to obtain information on the nature of internal stresses in metal. In the framework of the single-temperature model of material thermoelasticity, it is demonstrated that the detected changes in the structure of photoacoustic images may be caused by the dependence of the thermal-expansion coefficient on stresses and by the presence of stress concentrators within the indentation.  相似文献   

20.
Materials’ endurance to mechanical stress is desirable from a technological point of view. In particular, in the case of silica aerogels, an improvement of the material elasticity is needed for some applications. Carbon–silica aerogel composites have been obtained and their mechanical properties, Young’s modulus, elastic parameter and hardness, have been evaluated with a dynamical, non-destructive microindentation technique. Large changes are found in Young’s modulus when only a small amount of carbon is added. This is clearly shown in the shape of the indentation curves as well as in the increase of the elastic parameter value, which evaluates the percentage of elasticity versus plasticity. Young’s modulus values obtained for carbon–silica aerogels show a similar variation with the carbon mass fraction to that predicted by a commonly used model for composite materials. The measured hardness values corresponding to the total elastoplastic deformation do not show such a prominent dependency on the carbon mass fraction as the elastic parameter and Young’s modulus do and they are similar to those measured for the pure-silica aerogel. Received: 18 May 2001 / Accepted: 30 July 2001 / Published online: 30 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号