首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of Co(II), Ni(II), and Cu(II) chlorides and bromides and their metallic powders with tetrazol-1-yl-tris(hydroxymethyl)methane (L) afforded new complexes ML2Hal2 · mH2O(M = Co(II) or Ni(II), Hal = Cl; M = Cu(II), Hal = Cl or Br, m = 0; and M = Co(II) or Ni(II), Hal = Br, m = 2), MLnCl2 (M = Co(II) or Ni(II), n = 2 or 4; M = Cu(II), n = 2), and MLnBr2 · mH2O (M = Ni(II), n = 2, m = 2; M = Cu(II), n = 2, m = 0). The compositions and structures of the synthesized complexes were determined by elemental analysis, IR spectroscopy (50–4000 cm−1), and X-ray diffraction analysis. The introduction of a bulky substituent into position 1 of the tetrazole cycle was shown to exert almost no effect on the coordination mode but affected the composition and structure of the complexes.  相似文献   

2.
The Cu(II) and Co(II) complexes with 3,5-diphenyl-4-amino-1,2,4-triazole (L) of the composition CuLA2 · H2O (A = Cl?, Br?), CuL2A2 (A = Cl?, Br?, NO 3 ? ), CoL2A2 · nH2O (A = Cl?, n = 1; A = NCS?, n = 0) are synthesized. In these complexes, the ligand L is coordinated to a metal in monodentate mode through the heterocyclic N(1) atom. The Cu: L = 1: 1 complexes have binuclear structures with the anions acting as bridges, whereas the M: L = 1: 2 complexes are mononuclear. Both ferro-and antiferromagnetic exchange interactions are detected for the synthesized complexes.  相似文献   

3.
A series of binuclear Co(II), Ni(II) and Cu(II) complexes were synthesized by the template condensation of glyoxal, biacetyl or benzil bis-hydrazide, 2,6-diformyl-4-methylphenol and Co(II), Ni(II) or Cu(II) chloride in a 2:2:2 M ratio in ethanol. These 22-membered macrocyclic complexes were characterized by elemental analyses, magnetic, molar conductance, spectral, thermal and fluorescence studies. Elemental analyses suggest the complexes have a 2:1 stoichiometry of the type [M2LX2nH2O and [Ni2LX22H2O]·nH2O (where M = Co(II) and Cu(II); L = H2L1, H2L2 and H2L3; X = Cl; n = 2). From the spectroscopic and magnetic studies, it has been concluded that the Co(II) and Cu(II) complexes display a five coordinated square pyramidal geometry and the Ni(II) complexes have a six coordinated octahedral geometry. The Schiff bases and their metal complexes have also been screened for their antibacterial and antifungal activities by the MIC method.  相似文献   

4.
A series of new 3d metal complexes based on dimethyl pyridin-2-ylcarbamoylphosphoramidate (HL) was synthesized. The compounds with general formula M(HL)2Cl2·nH2O and M(L)2·nH2O (M=Co2+, Cu2+, Ni2+) were characterized by means of single-crystal X-ray analysis and IR spectroscopy. The organic ligands in all complexes are coordinated via oxygen atom of the carbonyl group and nitrogen atom of the heterocycle. The coordination environment of the central atoms is a distorted octahedron. The axial positions in the Co(II) and Ni(II) complexes with deprotonated ligands are occupied by water molecules. The Co(II) and Cu(II) complexes with phosphoryl ligands in a neutral form have different ligands in the axial positions: in the Co(II) complex, the positions are occupied by two water molecules, whereas in the Cu(II) complex, the positions are occupied by two chlorine anions. The structure of HL was experimentally and theoretically obtained by utilizing single-crystal X-ray analysis and DFT calculations. The computationally optimized geometric parameters for HL show a good agreement with the experimental results.  相似文献   

5.
A new series of copper(II) mononuclear and copper(II)–metal(II) binuclear complexes [(H2L)Cu] ? H2O, [CuLM] ? nH2O, and [Cu(H2L)M(OAc)2] ? nH2O, n = 1–2, M = Co(II), Ni(II), Cu(II), or Zn(II), and L is the anion of dipyridylglyoxal bis(2-hydroxybenzoyl hydrazone), H4L, were synthesized and characterized. Elemental analyses, molar conductivities, and FT-IR spectra support the formulation of these complexes. IR data suggest that H4L is dibasic tetradentate in [(H2L)Cu] ? H2O and [Cu(H2L)M(OAc)2] ? nH2O but tetrabasic hexadentate in [CuLM] ? nH2O (n = 1–2). Thermal studies indicate that waters are of crystallization and the complexes are thermally stable to 347–402°C depending upon the nature of the complex. Magnetic moment values indicate magnetic exchange interaction between Cu(II) and M(II) centers in binuclear complexes. The electronic spectral data show that d–d transitions of CuN2O2 in the mononuclear complex are blue shifted in binuclear complexes in the sequences: Cu–Cu > Cu–Ni > Cu–Co > Cu–Zn, suggesting that the binuclear complexes [CuLM] ? nH2O are more planar than the mononuclear complex. The structures of complexes were optimized through molecular mechanics applying MM +force field coupled with molecular dynamics simulation. [(H2L)Cu] ? nH2O, [CuLM] ? nH2O, and the free ligand were screened for antimicrobial activities on some Gram-positive and Gram-negative bacterial species. The free ligand is inactive against all studied bacteria. The screening data showed that [CuLCu] ? H2O > [(H2L)Cu] ? H2O > [CuLZn] ? H2O > [CuLNi] ? 2H2O ≈ [CuLCo] ? H2O in order of biological activity. The data are discussed in terms of their compositions and structures.  相似文献   

6.
Cu(II), Co(II), Ni(II), Cd(II), and Zn(II) complexes of 6-(2-phenyldiazenyl)-7-hydroxy-4-methyl coumarin (PAHC) are characterized based on elemental analyses, infrared, 1H NMR, magnetic moment, molar conductance, mass spectra, UV-Vis analysis, thermogravimetric analysis (TGA), and X-ray powder diffraction. From the elemental analyses, it is found that the complexes have formulae [M(L)2(H2O) n ] ? xH2O (where M = Cu(II), Co(II), Ni(II), Cd(II), and Zn(II), n = 0–2, x = 1–4). The molar conductance data reveal that all the metal chelates are non-electrolytes. From the magnetic and solid reflectance spectra, it is found that the structures of these complexes are octahedral or tetrahedral. The synthesized ligand and metal complexes were screened for antibacterial activity against some Gram-positive and Gram-negative bacteria.  相似文献   

7.
Complexes of 4′-(4′″-benzo-15-crown-5)methyloxy-2,2′:6′,2″-terpyridine (L) with metal perchlorates and hexafluorophosphates, [ML2](ClO4)2 · nH2O and [ML2](PF6)2 · nH2O · mC2H5OH (M = Ni(II), Co(II), Zn(II), Cu(II); n = 0–3; m = 0–2), were synthesized. Their vibrational spectra were studied. The spectral criteria for ligand coordination through the terpyridinic nitrogen atoms were established. The conformational structure of the B15C5 macrocycles of a ligand molecule in the synthesized complexes was proposed. The complexes were studied by thermogravimetry.  相似文献   

8.
New pincer ligand, 6-hydroxymethylpyridine-2-carboxylic acid methyl ester, HL, and its bipositive, tripositive and uranyl metal complexes have been synthesized and characterized by elemental and thermal analyses, IR, diffuse reflectance and 1H NMR spectra, molar conductance and magnetic moment measurements. The downfield shift of the aliphatic OH signal (from 3.87 vs. 2.96 ppm in the ligand) upon complexation indicates the coordination by protonated aliphatic OH group. Zn(II) and UO2(II) complexes are found to be diamagnetic as expected. The low molar conductance values indicate that Ni(II) and Zn(II) complexes are non electrolytes; Fe(II), Co(II), Cu(II) and UO2(II) complexes are 1:2  electrolytes while Fe(III) complex is a 1:3 electrolyte. The general compositions of the complexes are found to be [M(HL)X2nH2O where M=Ni(II) (X=Cl, n=1) and Zn(II) (X=Br, n=0); and [M(HL)2]Xm·nH2O where M=Fe(II) (X=Cl, m=2, n=0), Fe(III) (X=Cl, m=3, n=4), Co(II) (X=Cl, m=2, n=0), Cu(II) (X=Cl, m=2, n=0) and UO2(II) (X=NO3, m=2, n=0). The thermal behaviour of the complexes has been studied and different thermodynamic parameters are calculated using Coats-Redfern method.  相似文献   

9.
This paper deals with the synthesis of six σ-cyclohexylethynyl complexes of CoII and FeII and their characterization by chemical analysis, infrared and 1H NMR spectra, and magnetic measurements. Four of them are six-coordinate complexes, unsubstituted or substituted, namely K4[M(C≡C—C6H11)6] nNH3(M = Co, n = 2; M = Fe, n = 0), K2[Co(C≡C6H11)4(NH3)2] and K4[Fe(CN)4-(C≡C—C6H11)2]. Two are four-coordinate complexes of formula [(Ph3P)2M-(C≡C6H11)2] (M = Co, Fe). All are low-spin complexes, the magnetic moment for the six-coordinate Co(II) complexes, measured at various temperatures, being intermediate between low- and high-spin values.  相似文献   

10.
Reactions of [Ni(L)]Cl2 · 2H2O (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) with isophthalic acid (H2isoph) and 1,3,5-cyclohexanetricarboxylic acid (H3chtc) yield the 1D nickel(II) complexes {[Ni(L)(isoph)] · 3H2O}n (1) and {[Ni(L)(H-chtc)] · H2O}n (2). The structures were characterized by X-ray crystallography, spectroscopic and magnetic susceptibility. The crystal structures of the 1D chain compounds 1 and 2 show an elongated distorted octahedron about each nickel(II) ion. The magnetic behavior of two compounds exhibits weak intrachain antiferromagnetic interaction with J values of −0.93 cm−1 for 1 and −1.28 cm−1 for 2. The electronic spectra of the complexes are significantly affected by the nature of the carboxylate ligands.  相似文献   

11.
New complexes of Co(II), Ni(II), and Cu(II) with 1-(4-hydroxyphenyl)-1H-1,2,4-triazole (L) of the composition ML2(H2O)2(NO3)2 · nH2O (M = Co(II), n = 3; M = Ni(II), n = 0; M = Cu(II), n = 0) were synthesized and studied by photoelectron and IR spectroscopy, magnetochemistry, thermogravimetry, and X-ray powder diffraction analysis. The type of eff(T) relationship suggests that paramagnetic centers in the Co(II) chloride and Cu(II) nitrate and bromide complexes are involved in antiferromagnetic exchange interactions. The exchange energy values were estimated by the molecular field method.  相似文献   

12.
Reactions of some [M(η5-C5H5)2L2]n+ complexes (M  Mo, W; L = ligand; n = 0, 1, 2) with NaBH4 and LiAlH4 are reported. New neutral and cationic hydride derivatives of the type [M(η5-C5H5)2HL]m+ (m = 0, 1) are described, in particular the six halohydride complexes [M(η5-C5H5)2HX]. The deuteration studies were carried out, but the results do not lead to definite conclusions about the mechanism.  相似文献   

13.
Homo and heterobinuclear complexes of arylidene- anthranilic acids with Cu(II), Ni(II) and Co(II) are prepared and characterised by chemical analysis, spectral and X-ray diffraction techniques as well as conductivity measurements. Two types of homo-binuclear complexes are formed. The first has the formula M2L2Cl2(H2O)n where M=Cu(II), Ni(II) and Co(II), L = p-hydroxybenzylideneanthranilic acid (hba), p-dimethylaminobenzylideneanthranilic acid (daba) and p-nitrobenzylideneanthranilic acid(nba) and n = 0–3. The second type has the formula M2LCl3(H2O)n in which M is the same as in the first type, L = benzylideneanthranilic acid (ba), (daba) (in cases of Cu(II) and Ni(II)); and n = 1–5. Heterobinuclear complexes having the formula (MLCl2H2O) MCl2(H2O)n are isolated by reaction of Cu(II) binary chelates with Ni(II) and/or Co(II) chlorides. These are also characterized and their structures are elucidated.  相似文献   

14.
Formation and low energy collision-induced dissociation (CID) of doubly charged metal(II) complexes ([metal(II)+L n ]2+, metal(II)=Co(II), Mn(II), Ca(II), Sr(II) and L = acetonitrile, pyridine, and methanol) were investigated. Complexes of [metal(II)+L n ]2+ where n≤7 were obtained using electrospray ionization. Experimental parameters controlling the dissociation pathways for [Co(II)+(CH3CN)2]2+ were studied and a strong dependence of these processes on the collision energy was found. However, the dissociation pathways appear to be independent of the cone potential, indicating low internal energy of the precursor ions. In order to probe how these processes are related to intrinsic parameters of the ligand such as ionization potential and metal ion coordination, low energy CID spectra of [metal(II)+L n ]2+ for ligands such as acetonitrile, pyridine, and methanol were compared. For L = pyridine, all metals including the alkaline earth metals Ca and Sr were reduced to the bare [metal(I)]+ species. Hydride transfer was detected upon low energy CID of [metal(II)+L n ]2+ for metal(II)=Co(II) and Mn(II) and L = methanol, and corroborated by signals for [metal(II)+H?]+ and [metal(II)+H?+CH3OH]+, as well as by the complementary ion [CH3O]+.  相似文献   

15.
Two cobalt(II) coordination polymers, [Co(L1)(tbi)(H2O)] n (1) and [Co(L2)(tbi)] n (2) (L1 = 1,4-bis(benzimidazole)butane, L2 = 1,4-bis(2-methylbenzimidazole)butane, H2tbi = 5-tert-butyl isophthalic acid) have been synthesized under hydrothermal conditions and characterized by physicochemical and spectroscopic methods as well as by single-crystal X-ray diffraction analysis. Both complexes exhibit similar 2D (4,4) layer structures, constructed from tbi2? and bis(benzimidazole)-based bridging ligands. The cobalt centers display different coordination environments, with an octahedral geometry in 1 and a distorted square-pyramidal configuration in 2. The thermal stabilities, fluorescence and catalytic properties of both complexes have been investigated.  相似文献   

16.
Schiff-base complexes [ML·nH2OAc]mH2O (where L =?Schiff base derived from condensation of 2-acetylpyridine and leucine; M =?Cu(II), Ni(II) or Co(II); n =?0–2 and m =?3/2–2) and [ZnLOH]H2O have been synthesized and characterized using elemental analyses, spectral analyses (UV-Vis, IR, 1H NMR), conductance, thermal analyses, magnetic moments and QSAR analyses. The results showed that the ligand is mononegative tridentate coordinating the metal through pyridyl nitrogen, azomethine nitrogen, and carboxylate oxygen after deprotonation of the hydroxyl. Cu(II) forms square-planar and Ni(II) and Zn(II) form tetrahedral complexes, while Co(II) is octahedral. Prediction from quantitative structure activity relationship (QSAR) for anti-inflammatory activity in rats (% edema inhibition) has been made. The copper complex showed a significant analgesic and antirheumatic effect.  相似文献   

17.
Co(II), Ni(II) and Cu(II) chloro complexes of benzilic hydrazide (BH) have been synthesized. Also, reaction of the ligand (BH) with several copper(II) salts, including NO3 ?, AcO?, and SO4 ? afforded metal complexes of the general formula [CuLX(H2O) n nH2O, where X is the anion and n = 0, 1 or 2. The newly synthesized complexes were characterized by elemental analysis, mass spectra, molar conductance, UV–vis, IR spectra, magnetic moment, and thermal analysis (TG/DTG). The physico-chemical studies support that the ligand acts as monobasic bidentate towards metal ion through the carbonyl and hydroxyl oxygen atoms. The spectral data revealed that the geometrical structure of the complexes is square planar for Cu (II) complexes and tetrahedral for Co(II) and Ni(II) complexes. Structural parameters of the ligand and its complexes have been calculated. The ligand and its metal complexes are screened for their antimicrobial activity. The catalytic activities of the metal chelates have been studied towards the oxidative decolorization of AB25, IC and AB92 dyes using H2O2. The catalytic activity is strongly dependent on the type of the metal ion and the anion of Cu(II) complexes.  相似文献   

18.
The treatment of the aquocation [Co(η3-2-MeC3H4)(η5-C5H5)(H2O]+ with neutral and anionic ligands gives new cobalt complexes containing cations [Co(η3-2-MeC3H4)(η5-C5H5)L]n+, n = 0; L = CN, CH3COO, CF3COO and n = 1; L = P(p-MePh)3, NCEt, NCPh, CNCy, dppm and [{Co(η3-2-MeC3H4)(η5-C5H5)}2 (μ-L-L)]2+, L-L = bipy, dppm. The neutral cyano complex reacts with various electrophiles to give cationic isocyanide complexes containing the cation [Co(η3-2-MeC3H4)(η5-C5H5)(CNR)]+, which have been isolated in low yields. Chemical behaviour and structural implications of IR and 1H and 13C NMR spectra are discussed.  相似文献   

19.
New complexes of type [M(HL)(CH3COO)(OH2)m]·nH2O (where M:Co, m = 2, n = 2; M:Ni, m = 2, n = 1.5; M:Zn, m = 0, n = 2.5 and M:Cd, m = 0, n = 0; H2L:5-bromo-N,N′-bis-(salicylidene)-o-tolidine) have been synthesized and characterized by microanalytical, IR, UV–Vis-NIR and magnetic data. Electronic spectra of Co(II) and Ni(II) complexes are characteristic for an octahedral stereochemistry. The IR spectra indicate a chelate coordination mode for mono-deprotonated Schiff base and a bidentate one for acetate ion. The thermal transformations are complex according to TG and DTA curves including dehydration, acetate decomposition and oxidative degradation of the Schiff base. The final product of decomposition is the most stable metallic oxide.  相似文献   

20.
The use of ferricenium cations [(C5H5)2FE]X (X = BF4, PF6, SbF6) as one-electron oxidizing agents for organometallic complexes is demonstrated. Sandwich compounds M(C5H5)2 (M = Cr, Co, Ni) and Cr(C6H6)2 are oxidized in nearly quantitative yield to the corresponding cations [M(C5H5)2]BF4 and [(C6H6)2Cr]BF4. The metalmetal bond in the dinuclear organometallic complexes [DienylM(CO)n]2 (M = Mo (n = 3), Fe (n = 2), Ni (n = 1)) and Co2(CO)8 is fissioned by (C5H5)2Fe+ in the presence of neutral ligands L to form the corresponding cationic compounds [DienylM(CO)nLm]X (M = Mo (n = 2), Fe (n = 2), Ni (n = 0)) and [Co(CO)3L2BF4 (L = VB and VIB donor ligands) in high yields.The practical applications of ferricenium cations are discussed in comparison with other methods for the preparation of cationic organometallic complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号