首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
New palladium(II) and platinum(II) complexes of saccharinate (sac), trans-[Pd(py)2(sac)2] (1), cis-[Pt(py)2(sac)2] (2), trans-[Pd(3-acpy)2(sac)2] (3) and cis-[Pt(3-acpy)2(sac)2] (4) (py = pyridine and 3-acpy = 3-acetylpyridine) have been synthesized. Elemental analysis, UV-Vis, IR, NMR and TG/DTA characterizations have been carried out. The structures of 1-4 were determined by X-ray diffraction. The palladium(II) and platinum(II) ions are coordinated by two N-bonded sac ligands, and two nitrogen atoms of py or 3-acpy, forming a distorted square-planar geometry. The palladium(II) complexes (1 and 3) are trans isomers, while the platinum(II) complexes (2 and 4) are cis isomers. The mononuclear species in the solid state are connected by weak intermolecular C-H?O hydrogen bonds, C-H?π and π?π stacking interactions. The platinum(II) complexes show significant fluorescence at the room temperature.  相似文献   

2.
Summary The platinum(II) halidecis-[Pt(DMTC)(DMSO)X2] andcis-[Pt(DETC)(DMSO)X2](X=Cl or Br; DMSO=dimethyl sulfoxide; DMTC=EtOSCN-Me2; DETC=EtOSCNEt2) adducts and the platinum(II) and palladium(II) halide adducts,trans-[M(DETC)2X2] (M=Pt or Pd; X=Cl or Br), have been prepared. The complexes were characterized by i.r., and1H and13Cn.m.r. spectroscopy. Both DMTC and DETC coordinate through the sulphur atoms. The 1:2 DETC complexes present the usualtrans configuration, whereas the presence of DMSO favourscis geometry in the mixed species.  相似文献   

3.
The electron impact mass spectral fragmentation of five newly synthesized Ni(II) and Pd(II) complexes of diphenylphosphinoacetone (HL), i.e. trans-[ NiCl2(HL)2] and trans-[PdCl2(HL)2] and their enolates cis-[NiL2] and cis-[PdL2] and the bis-enolate of 3-diphenylphosphinobutan-2-one (HLMe), trans-[Ni(LMe)2], is discussed. The proposed fragmentation mechanisms and the ion structures were confirmed by high-resolution data for three of the compounds and by Ni and Pd isotope abundances. The results obtained reveal that a mass spectral differentiation is useful in the identification of these types of complexes. Especially with phosphinoenolate bis-chelates molecular ion peaks are observed.  相似文献   

4.
《Polyhedron》2005,24(16-17):2189-2193
We prepared and characterized dinuclear copper(II) and mononuclear palladium(II) complexes coordinated with a pyridine-based open-shell ligand, 5-(4′,4′,5′,5′-tetramethylimidazoline-3′-oxide-1′-oxyl)-2(1H)-pyridone (=HL). In the copper(II) dinuclear complex [Cu2(L)4(DMF)2] (1), four deprotonated ligands are coordinated as bridging ligands to form a paddle-wheel type unit. In the palladium(II) complex trans-[PdCl2(HL)2] (2), two HL ligands in the neutral hydroxypyridine form are coordinated to the trans positions of the metal ion via the nitrogen atoms. The hydroxyl groups of the ligands are hydrogen-bonded to the chlorine atoms of neighboring molecules, thereby creating a hydrogen-bonded double-chain molecular arrangement. Magnetic susceptibilities of these complexes were measured and analyzed. The small intramolecular antiferromagnetic interaction in the latter complex may originate from superexchange through the diamagnetic metal center.  相似文献   

5.
UV irradiation of trans-dinitrobis(tri-n-propylphosphine)palladium(II) in MeOH yields a photostationary trans-cis mixture which reverts quantitatively in the dark to the trans-form. The cis-isomer, which can be isolated in crystalline form by irradiation of trans-species in n-hexane, has been characterized by UV, IR 1H and 31P NMR spectroscopy. Irradiation of a 1/1 mixture of trans-[(PBu3n)2Pd(NO2)2] and trans-[(PPr3n)2Pd(NO2)2] gives almost entirely a 1/1 mixture of the corresponding cis-isomer, indicating an intramolecular process.  相似文献   

6.
The preparation of a series of ferrocenyl nitrogen donor ligands including ferrocenylpyridines, ferrocenylphenylpyridines and 1,1-di(2-pyridyl)ferrocene is described. Coordination studies of the substituted pyridines (L) were carried out with platinum, palladium, rhodium and iridium. This resulted in the preparation of the following types of complexes: [MCl(CO)2(L)] and [M(cod)(L)2]ClO4 where M=Rh or Ir, cod=1,5-cyclooctadiene; [MCl2(L)2] where M=Pt or Pd. The X-ray crystal structure of trans-dichlorobis(3-ferrocenylpyridine)palladium was obtained. The complexes were screened for activity against two human cancer cell lines. At least two of the complexes displayed growth inhibition similar to that of the widely used chemotherapeutic agent, cisplatin.  相似文献   

7.
1H, 13C and 15N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with picolines, [Au(PIC)Cl3], trans‐[Pd(PIC)2Cl2], trans/cis‐[Pt(PIC)2Cl2] and [Pt(PIC)4]Cl2, were performed. After complexation, the 1H and 13C signals were shifted to higher frequency, whereas the 15N ones to lower (by ca 80–110 ppm), with respect to the free ligands. The 15N shielding phenomenon was enhanced in the series [Au(PIC)Cl3] < trans‐[Pd(PIC)2Cl2] < cis‐[Pt(PIC)2Cl2] < trans‐[Pt(PIC)2Cl2]; it increased following the Pd(II) → Pt(II) replacement, but decreased upon the transcis‐transition. Experimental 1H, 13C and 15N NMR chemical shifts were compared to those quantum‐chemically calculated by B3LYP/LanL2DZ + 6‐31G**//B3LYP/LanL2DZ + 6‐31G*. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Reaction of 3-methoxycarbonyl-2-methyl- or 3-dimethoxyphosphoryl-2-methyl-substituted 4-oxo-4H-chromones 1 with N-methylhydrazine resulted in the formation of isomeric, highly substituted pyrazoles 4 (major products) and 5 (minor products). Intramolecular transesterification of 4 and 5 under basic conditions led, respectively, to tricyclic derivatives 7 and 8. The structures of pyrazoles 4a (dimethyl 2-methyl-4-oxo-4H-chromen-3-yl-phosphonate) and 4b (methyl 4-oxo-2-methyl-4H-chromene-3-carboxylate) were confirmed by X-ray crystallography. Pyrazoles 4a and 4b were used as ligands (L) in the formation of ML2Cl2 complexes with platinum(II) or palladium(II) metal ions (M). Potassium tetrachloroplatinate(II), used as the metal ion reagent, gave both trans-[Pt(4a)2Cl2] and cis-[Pt(4a)2Cl2], complexes with ligand 4a, and only cis-[Pt(4b)2Cl2] isomer with ligand 4b. Palladium complexes were obtained by the reaction of bis(benzonitrile)dichloropalladium(II) with the test ligands. trans-[Pd(4a)2Cl2] and trans-[Pd(4b)2Cl2] were the exclusive products of these reactions. The structures of all the complexes were confirmed by IR, 1H NMR and FAB MS spectral analysis, elemental analysis and Kurnakov tests.  相似文献   

9.
New palladium(II) and platinum(II) complexes, cis-[Pd(bpy)(sac)2] (1) and cis-[Pt(bpy)(sac)2] (2), where sac = saccharinate, bpy = 2,2′-bipyridine, have been synthesized and characterized by elemental analysis, UV–Vis, IR, 1H NMR and 13C NMR. The structures of the DMSO solvated complexes are determined by X-ray diffraction. Both complexes are isomorphous and the metal ions are coordinated by two N-bonded sac ligands, and two nitrogen atoms of pyridyl groups of bpy in a cis fashion. The mononuclear species interact each other through weak intermolecular C–H?O hydrogen bonds, C–H?π and π?π interactions leading to three-dimensional supramolecular networks. All complexes exhibit a high thermal stability in the solid state, and are fluorescent in the solution.  相似文献   

10.
Sodium thiosulfate has been utilized as a rescuing agent for relief of the toxic effects of cisplatin and carboplatin. In this work, we characterized the kinetics of reactions of the trans-dichloro-platinum(IV) complexes cis-[Pt(NH3)2Cl4], ormaplatin [Pt(dach)Cl4] and trans-[PtCl2(CN)4]2? (anticancer prodrugs and a model compound) with thiosulfate at biologically important pH. An overall second-order rate law was established for the reduction of trans-[PtCl2(CN)4]2? by thiosulfate, and varying the pH from 4.45 to 7.90 had virtually no influence on the reaction rate. In the reactions of thiosulfate with cis-[Pt(NH3)2Cl4] and with [Pt(dach)Cl4], the kinetic traces displayed a fast reduction step followed by a slow substitution involving the intermediate Pt(II) complexes. The reduction step also followed second-order kinetics. Reductions of cis-[Pt(NH3)2Cl4] and [Pt(dach)Cl4] by thiosulfate proceeded with similar rates, presumably due to their similar configurations, whereas the reduction of trans-[PtCl2(CN)4]2? was about 1,000 times faster. A common reduction mechanism is suggested, and the transition state for the rate-determining step has been delineated. The activation parameters are consistent with transfer of Cl+ from the platinum(IV) center to the attacking thiosulfate in the rate-determining step.  相似文献   

11.
《印度化学会志》2022,99(11):100774
Four palladium (II) and platinum(II) complexes with the formula [MCl2(HPhqS)2] and [M(PhqS)2] (MII = Pd and Pt), were synthesized by treating Na2PdCl4 or K2PtCl4 with 2 mol of 4-Methylene-3-phenyl-3,4-dihydroquinazoline-2(1H)-thione (HPhqS) with or without the present base. The geometry around the Pd(II) and Pt(II) ions was a square planner and the HPhqS ligand was bonded as monodentate through the sulfur atom in complexes (1) and (2), while as bidentate chelating ligand through the nitrogen and sulfur atoms in complexes (3) and (4) as revealed by the data collection from spectroscopic studies. The prepared compounds were fully characterized by different physicochemical and spectroscopic methods. Furthermore, the free HPhqS ligand and its complexes were evaluated in vitro in regard to their antimicrobial activity against five bacteria species (Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, staphylococcus epidermidis and staphylococcus aureus). Moreover, the cytotoxic activity of the compounds was examined against breast (MCF-7) and lung (A549) cancer cell lines, and the [PdCl2(LH)2] (1) and [PtCl2(LH)2] (2) appeared a highest inhibitory effect against MCF-7 cell lines with IC50 = 4.291 ± 0.181 μM and 3.479 ± 0.162 μM, respectively, in comparison to the standard control and other complexes. The prepared ligand accompanied by the synthesized complexes were optimized using B3LYP method and 6–311++G(d,p) biases sets for the ligand and SDD basis set for the central metal. Different quantum parameters including electron affinity, ionization energy, dipole moment, hardness and vibrational frequencies were calculated for the ligand and its complexes. The total energy calculated for the two tautomeric structures of the ligand HPhqS showed a slightly higher value of the thione form over the thiol form. In addition, the trans-[PdCl2(HPhqS)2] complex possessed the highest dipole moment values while the cis-[PtCl2(HPhqS)2] showed non. In general, the obtained theoretical results showed a good match to the experimental findings.  相似文献   

12.
Differences in the ion flotation properties of palladium(II) and platinum(IV) chloro complexes in aqueous solutions are used to achieve separations of these metals. The anionic chloro complex PtCl2-6 is floated selectively with cationic surfactants of the type, RNR'3Br, from solutions of PdCl2-4 and various concentrations of hydrochloric acid. The palladium(II) does not float from solutions of ? 3.0 M HCl and the platinum(IV) floated from these solutions can be recovered free of palladium. However, the separation is incomplete as much of the platinum(IV) is also unfloated from these solutions. Quantitative separations are obtained by conversion of the palladium(II) to the cationic ammine, Pd(NH3)42+ with aqueous ammonia prior to flotation. The anionic chloro complex of platinum(IV) is unaffected by the presence of ammonia and is floated quantitatively with the surfactant n-hexadecyltri-n-propylammonium bromide from 0.01 M ammonia solutions.  相似文献   

13.
1H NMR spectroscopy was applied to study the reactions of palladium(II) complexes, cis-[Pd(dpa)Cl2] and cis-[Pd(dpa)(H2O)2]2+ (dpa is 2,2′-dipyridylamine acting as a bidentate ligand) with the dipeptides methionylglycine (Met-Gly) and histidylglycine (His-Gly), and the N-acetylated derivatives of these dipeptides, MeCOMet-Gly and MeCOHis-Gly. All reactions were carried out in the pH range 2.0–2.5 with equimolar amounts of the palladium(II) complex and the peptide at two different temperatures, 25 and 60 °C. In the reactions of cis-[Pd(dpa)Cl2] and cis-[Pd(dpa)(H2O)2]2+ with Met-Gly and His-Gly, no hydrolysis of the peptide bond was observed. The final product in these reactions was the [Pd(dpa)2]2+ complex. The square-planar structure of this complex was confirmed by X-ray analysis. The reaction of the cis-[Pd(dpa)(H2O)2]2+ complex with the MeCOHis-Gly and MeCOMet-Gly peptides under the previously mentioned experimental conditions was remarkably selective in the cleavage of the amide bond involving the carboxylic group of methionine in the side chain. The modes of coordination of cis-[Pd(dpa)Cl2] and cis-[Pd(dpa)(H2O)2]2+ in the reactions with the non-acetylated peptides and the total steric inhibition of the hydrolytic reaction between cis-[Pd(dpa)(H2O)2]2+ and MeCOHis-Gly can be attributed to the steric bulk of the palladium(II) complex. This finding should be taken into consideration in designing new palladium(II) complexes for the regioselective cleavage of peptides and proteins.  相似文献   

14.
The redox reaction of bis(2-benzamidophenyl) disulfide (H2L-LH2) with [Pd(PPh3)4] in a 1:1 ratio gave mononuclear and dinuclear palladium(II) complexes with 2-benzamidobenzenethiolate (H2L), [Pd(H2L-S)2(PPh3)2] (1) and [Pd2(H2L-S)2 (μ-H2L-S)2(PPh3)2] (2). A similar reaction with [Pt(PPh3)4] produced only the corresponding mononuclear platinum(II) complex, [Pt(H2L-S)2(PPh3)2] (3). Treatment of these complexes with KOH led to the formation of cyclometallated palladium(II) and platinum(II) complexes, [Pd(L-C,N,S)(PPh3)] ([4]) and [Pt(L-C,N,S) (PPh3)] ([5]). The molecular structures of 2, 3 and [4] were determined by X-ray crystallography.  相似文献   

15.
The preparation and reactions are described of some novel platinum(II) complexes with a hydride ligand group trans to an sp3 carbon, viz. [PtH(YCN)-(PPh3)2] with Y  (CH2)n (n = 1—3) or o-CH2C6H4.  相似文献   

16.
The oxidative addition of 2-chloropyrimidine or 2-chloropyrazine to [Pd(PPh3)4] yields a mixture of trans-[PdCl(C4H3N2-C2)(PPh3)2] (I) and [PdCl(μ-C4H3N2-C2,N1)(PPh3 (II) (C4H3N2 = 2-pyrimidyl or 2-pyrazyl group). The mononuclear complexes I are quantitatively converted into the binuclear species II upon treatment with H2O2. The reaction of II with HCl gives the N-monoprotonated derivatives cis-[PdCl2(C4H4N2-C2)(PPh3)] (III), from which the cationic complexes trans-[PdCl(C4H4N2-C2)(L) (L = PPh3, IV; PMe2Ph, V; PEt3, VI) can be prepared by ligand substitution reactions. Reversible proton dissociation occurs in solution for III–VI. The low-temperature 1H NMR spectra of trans-[PdCl(C4H4N2-C2)(PMe2Ph)2]ClO4 show that the heterocyclic moiety undergoes restricted rotation around the PdC2 bond and that the 2-pyrazyl group is protonated predominantly at the N1 atom. These results and the 13C NMR data for the PEt3 derivatives are interpreted on the basis of a significant dπ → π back-bonding contribution to the palladium—carbon bond of the protonated ligands.  相似文献   

17.
The polar phosphanyl‐carboxamide, 1′‐(diphenylphosphanyl)‐1‐[N‐(2‐hydroxyethyl)carbamoyl]ferrocene ( 1 ), reacts readily with hydrogen peroxide and elemental sulfur to give the corresponding phosphane‐oxide and phosphane‐sulfide, respectively, and with platinum(II) and palladium(II) precursors to afford various bis(phosphane) complexes [MCl2( 1 ‐κP)2] (M = trans‐Pd, trans‐Pt and cis‐Pt). The anticancer activity of the compounds was evaluated in vitro with the complexes showing moderate cytotoxicities towards human ovarian cancer cells. Moreover, the biological activity was found to be strongly influenced by the stereochemistry, with trans‐[PtCl2( 1 ‐κP)2] being an order of magnitude more active than the corresponding cis isomer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Palladium(II) extraction from hydrochloric acid solutions with a novel weakly basic complexing reagent, 4-[(hexylsulfanyl)methyl]-3,5-dimethyl-1H-pyrazole, dissolved in chloroform was studied. Palladium(II) was found to be highly efficiently extracted from 0.1–3 mol/L HCl solutions. A coordination mechanism of palladium(II) extraction with a protonated form of the reagent via fast interphase transfer of ion associates was proposed. The composition of the extracted compound, [PdCl2μ-L]n (n > 2), was found, and the way of coordination of the reagent to metal ions through N(2) nitrogen atom and thioether sulfur atom was determined. The reagent can be recommended for concentrating palladium(II) and selectively separating it from platinum(IV), copper(II), nickel(II), and iron(III).  相似文献   

19.
20.
Herein we report, a series of new benzimidazolium chlorides as N-heterocyclic carbene (NHC) ligand and their corresponding palladium(II)-NHC complexes with the general formula [PdCl2(NHC)2] were synthesized. All new compounds were characterized by 1H NMR, 13C NMR, IR spectroscopy and elemental analysis techniques. The catalytic activity of palladium(II)-NHC complexes was investigated in the direct C2- or C5-arylation of thiazoles with aryl bromides in presence of palladium(II)-NHC at 150?°C for 1?h. These complexes exhibited the good catalytic performance for the direct arylation of thiazoles. The arylation of thiazoles regioselectively produced C2- or C5-arylated thiazoles in moderate to high yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号