首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A novel pH‐responsive polymer vesicle obtained by the aqueous self‐assembly of carboxy‐terminated hyperbranched polyesters is reported. The synthesis is very simple, just a one‐step esterification of the commercially available hydroxy‐terminated hyperbranched polyester of Boltorn Hx (x = 20, 30, 40) with succinic anhydride. The vesicle size can be controlled from 200 nm to 10 µm by simply adjusting the solution pH as well as the degrees of branching (or generation).

  相似文献   


2.
Summary: Novel hyperbranched poly(amine‐ester) (HPAE) cross‐linked films were prepared by cross‐linking the terminal hydroxyl groups of HPAE using glutaraldehyde (GA). Atom force microscope and scanning electron microscope revealed their smooth surfaces, dense and homogenous matrices. Property characterizations indicated that these cross‐linked films had good hydrophilicity, relative low protein adsorption, and high tensile strength. Also, their swelling behavior varied with the solvent.

Structure of the hyperbranched poly(amine‐ester).  相似文献   


3.
Linear and crosslinked betaine‐type polyampholytes based on ethyl 3‐aminocrotonate and unsaturated carboxylic acids have been synthesized by very fast polymerization in bulk and solution. Bulk polymerization occurred exothermically even at room temperature and without adding an initiator. The polyampholytes showed stimuli‐responsive properties with respect to pH, ionic strength, water/organic solvent mixtures, and metal ion complexation.

Temperature profile of the polymerization reaction for an equimolar mixture of CRO and AA with time in the absence of initiator.  相似文献   


4.
The synthesis of a rapidly forming redox responsive poly(ferrocenylsilane)‐poly(ethylene glycol) (PFS‐PEG)‐based hydrogel is described, achieved by a thiol‐Michael addition click reaction. PFS bearing acrylate side groups (PFS‐acryl) was synthesized by side group modification of poly(ferrocenyl(3‐iodopropyl)methylsilane) (PFS‐I) and characterized by 1H NMR, 13C NMR, and FT‐IR spectroscopy. The equilibrium swelling ratio, morphology, rheology, and redox responsive properties of the PFS‐PEG‐based hydrogel are reported.

  相似文献   


5.
Summary: This paper presents the structural influence of the Si H functionality on the physicochemical properties of polysilanes. New low‐temperature restructuring processes were discovered using thermal analysis (TGA, DSC). Photoluminescent (FL) and X‐ray photoelectron spectroscopy (XPS) measurements revealed the optoelectronic properties‐chemical structure relationship of the synthesized polymers.

Highly reactive Si H groups lead to restructuring of the main polysilane chain.  相似文献   


6.
Highly dispersed ZnO nanoparticles with variable particle sizes were successfully prepared within an amphiphilic hyperbranched polyetherpolyol matrix via decomposition of an organometallic precursor in the presence of air leading to stable nanocomposites. The high degree of stabilization during and after the synthesis by the polymer permits control over the nanoparticle size and therefore, due to the quantum‐size‐effect, the particle properties. Furthermore, these polymer‐inorganic nanocomposites can easily be dispersed in apolar solvents to yield highly transparent, stable solutions.

  相似文献   


7.
We herein develop a facile catalyst‐free method to prepare hyperbranched hydroxyl‐enriched aliphatic polycarbonate according to SCROP strategy. PEG‐attached multiarm hyperbranched copolymer HEHDO‐star‐mPEG was further designed. It was found that HEHDO‐star‐mPEG can self‐assemble into supramolecular multimolecular micelles in water. HEHDO‐star‐mPEG micelle showed excellent stability with respect to micellar size upon dilution, and displayed good cell‐biocompatibility. An anticancer drug of doxorubicin with hydrogen‐bonding functionality was incorporated into obtained micelles to establish a drug delivery system model. A high drug‐loading content as well as sustained release pattern for HEHDO‐star‐mPEG based delivery system was achieved.

  相似文献   


8.
Summary: Amphiphilic hyperbranched polyester (H20‐AM) with methacrylate end groups was synthesized based on hyperbranched aliphatic polyester (Boltorn™ H20). Narrow‐dispersed crosslinkable vesicles were obtained by dissolving H20‐AM in water, and characterized by laser light scattering and TEM. The hollow structural vesicle is composed of around 350 H20‐AM molecules, having a radius of around 40 nm and of 1.9 × 106 g · mL−1. The vesicles were fixed by crosslinking of methacrylate groups to form shape‐persistent structures.

TEM images of the crosslinked vesicles at lower magnification.  相似文献   


9.
Poly(2‐alkyl‐2‐oxazoline)s can be regarded as pseudo‐peptides or bioinspired polymers, which are available through living/controlled cationic polymerization and polymer (“click”) modification procedures. Materials and solution properties may be adjusted via the nature of the side chain (hydrophilic‐hydrophobic, chiral, bio‐functional, etc.), opening the way to stimulus‐responsive materials and complex colloidal structures in aqueous environments. Herein, we give an overview over the macromolecular engineering of polyoxazolines, including the synthesis of biohybrids, and the “smart”/bioinspired aggregation behavior in solution.

  相似文献   


10.
Macroscopic pH‐responsive self‐assembly is successfully constructed by polyacrylamide(pAAm)‐based gels carrying dansyl (Dns) and β‐cyclodextrin (βCD) residues, which are represented as Dns‐gel and βCD‐gel, respectively. Dns‐gel and βCD‐gel assemble together at pH ≥ 4.0, but disassemble at pH ≤ 3.0. The adhesion strengths for pairs of Dns‐gel/βCD‐gel increase with increasing pH. The fluorescence study on the model system of pAAm modified with 1 mol% Dns moieties (pAAm/Dns) reveals that Dns residues are protonated at a lower pH, which results in the reduction in binding constant (K) for Dns residues and βCD.

  相似文献   


11.
An enzymatic tandem reaction is described in which the enzymes phosphorylase and Deinococcus geothermalis glycogen branching enzyme (Dg GBE) catalyze the synthesis of branched polyglucans from glucose‐1‐phosphate (G‐1‐P). Phosphorylase consumes G‐1‐P and polymerizes linear amylose while Dg GBE introduces branching points on the α‐(1 → 6) positions by reshuffling short oligosaccharides. The resulting branched polyglucans have an unusually high degree of branching of 11%.

  相似文献   


12.
Fully conjugated block copolymers containing 1,4‐ and 1,3‐phenylenevinylene repeating units can be prepared by the sequential ring opening metathesis polymerization of strained cyclophanedienes, initiated by ruthenium carbene complexes (Grubbs metathesis catalysts). The molecular weight of the constituent blocks can be tightly controlled by changing the catalyst to monomer ratio and the volume fraction of the block copolymers independently tailored by the ratio of the monomers employed. Extensive phase separation between the constituent blocks is observed in thin films of these polymers by atomic force microscopy and efficient energy transfer between blocks containing 1,4‐ and 1,3‐phenylenevinylene units can be seen in the photoluminescence of these materials.

  相似文献   


13.
This work focused on the synthesis and aqueous self‐assembly of a series of novel hyperbranched star copolymers with a hyperbranched poly[3‐ethyl‐3‐(hydroxymethyl)oxetane] (HBPO) core and many linear poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) arms. The copolymers can synchronously form unimolecular micelles (around 10 nm) and large multimolecular micelles (around 100 nm) in water at room temperature. TEM measurements have provided direct evidence that the large micelles are a kind of multimicelle aggregates (MMAs) with the basic building units of unimolecular micelles. It is the first demonstration of the self‐assembly mechanism for the large multimolecular micelles generated from the solution self‐assembly of hyperbranched copolymers.

  相似文献   


14.
Summary: The first example of a room temperature reversible addition‐fragmentation chain transfer polymerization conducted directly in aqueous media is detailed. Under these conditions acrylamide and N,N‐dimethylacrylamide may be polymerized in a controlled fashion to near quantitative conversions employing a difunctional trithiocarbonate chain transfer agent (CTA). Hydrolysis studies conducted at pH 5.5 suggest that the CTA is stable up to approximately 50 °C.

  相似文献   


15.
Well‐defined amphiphilic block‐graft copolymers PCL‐b‐[DTC‐co‐(MTC‐mPEG)] with polyethylene glycol methyl ether pendant chains were designed and synthesized. First, monohydroxyl‐terminated macroinitiators PCL‐OH were prepared. Then, ring‐opening copolymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and cyclic carbonate‐terminated PEG (MTC‐mPEG) macromonomer was carried out in the presence of the macroinitiator in bulk to give the target copolymers. All the polymers were characterized by 1H NMR and gel permeation chromatography (GPC). The polymers have unimodal molecular weight distributions and moderate polydispersity indexes. The amphiphilic block‐graft copolymers self‐assemble in water forming stable micelle solutions with a narrow size distribution.

  相似文献   


16.
Summary: We synthesized for the first time novel pH‐responsive polyampholyte microgels consisting of poly(methacrylic acid) and poly(2‐(diethylamino)ethyl methacrylate) (PMAA‐PDEA) that are sterically stabilized with poly(ethylene glycol) methyl ether methacrylate (PEGMEM). These microgels showed enhanced hydrophilic behavior in aqueous medium at low and high pH but become hydrophobic and compact between pH 4 and 6 near the isoelectric point. Dynamic‐light scattering measurements showed that the hydrodynamic radius, Rh of these microgels is approximately 100 nm between pH 4 and 6 and increases to around 140 and 170 nm at pH 2 and 10, respectively. It is evident that the cross‐linked MAA‐DEA microgel that is sterically stabilized with PEGMEM retains the polyampholyte properties in solution.

Sterically stabilized cross‐linked MAA‐DEA microgel.  相似文献   


17.
Polyaniline nanodisks have been synthesized successfully by the chemical oxidation polymerization of aniline by a self‐assembly process without the use of any acid. The thickness and lateral dimensions of the polyaniline nanodisks are in the range of 20–30 nm and 1–2 µm, respectively. The influence of synthetic parameters, such as the concentration of ammonium peroxydisulfate and pH, on the morphologies of polyaniline nanostructures have been investigated.

  相似文献   


18.
Chromophore‐containing dendritic structures (G1, G2) are utilized to intercalate layered silicates, which results in a large d‐spacing up to 126 Å. An exfoliated morphology is obtained by mixing the dendritic structure intercalated layered silicates with polyimide in N,N‐dimethylacetamide solution. The dendritic structures attached on the clay template would arrange in a non‐centrosymmetric manner. This self‐assembled arrangement brought about the electro‐optical coefficients of 5–6 pm · V−1 for these relatively low chromophore‐containing organic/inorganic nanocomposites without resorting to poling. Excellent temporal stability (100 °C) is also achieved.

  相似文献   


19.
We describe an enzyme‐responsive polymeric vehicle, which is of great interest in controlled drug delivery, biosensing, and other related areas. The polymer synthesized using lipase as catalyst in DMSO has a favorable molecular structure that is quickly hydrolyzed by lipase in aqueous phase, and allows a fast release of encapsulated molecules.

  相似文献   


20.
Summary: The grafting of poly(ethylene oxide) (PEO) onto silica nanoparticles was performed in situ by the ring‐opening polymerization of the oxirane monomer initiated from the mineral surface using aluminium isopropoxide as an initiator/heterogeneous catalyst. Alcohol groups were first introduced onto silica by reacting the surfacic silanols with prehydrolyzed 3‐glycidoxypropyl trimethoxysilane. The alcohol‐grafted silica played the role of a coinitiator/chain‐transfer agent in the polymerization reaction and enabled the formation of irreversibly bonded polymer chains. Silica nanoparticles containing up to 40 wt.‐% of a hairy layer of grafted PEO chains were successfully produced by this technique.

The grafting of poly(ethylene oxide) (PEO) onto silica nanoparticles by in‐situ ring‐opening polymerization of the oxirane monomer.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号