首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
For polymer synthesis upon visible light, actual photoinitiator operates in a restricted part of the spectrum. As a consequence, several photoinitiators are necessary to harvest all of the emitted visible photons. Herein, 2,7‐di‐tert‐butyldimethyldihydropyrene is used for the first time as a multicolor photoinitiator for the cationic polymerization of epoxides. Upon addition of diphenyliodonium hexafluorophosphate and optionally N‐vinylcarbazole, the originality of this approach is to allow efficient monomer conversions under various excitation light sources in the 360–650 nm wavelength range: halogen lamps, and light‐emitting and laser diodes. The synthesis of an interpenetrated polymer network from an epoxide/acrylate blend using a red light at 635 nm is also feasible. The formed polymer material exhibits a photochromic character.

  相似文献   


2.
Lowering the activation energy of a chemical reaction is an essential part in controlling chemical reactions. By attaching a single electron, a barrierless path for the cistrans isomerization of maleonitrile on the anionic surface is formed. The anionic activation can be applied in both reaction directions, yielding the desired isomer. We identify the microscopic mechanism that leads to the formation of the barrierless route for the electron‐induced isomerization. The generalization to other chemical reactions is discussed.  相似文献   

3.
In the present work, chromophoric system (E)‐4‐(naphthalen‐1‐yl diazenyl)benzoic acid was synthesized and incorporated into lignin core. The end hydroxyl group of lignin was modified with the free carboxyl group of the chromophoric systems by dicyclohexylcarbodiimide coupling. The products were characterized by means of UV–visible, fluorescence, FT‐IR, and NMR spectroscopic methods and subjected to photoresponsive studies. The results show that modification enhances the light absorption and light fastening properties of the chromophoric system. The photoinduced trans–cis isomerization on the newly developed photosensitive biopolymeric system and the chromophoric system were investigated. Results also show that the trans–cis photoisomerization and the reverse cis–trans thermal conversions of the photoactive groups were also assisted by the incorporation onto biopolymeric core. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Novel water‐borne macrophotoinitiator containing thioxanthone (TX) end group was successfully synthesized by using Diels–Alder (DA) [4 + 2] click chemistry strategy. For this purpose, thioxanthone‐anthracene (TX‐A) and maleimide end‐functionalized poly(ethylene glycol) (PEG‐MI) were reacted in toluene at reflux temperature for 48 h. The final polymer (PEG‐TX) and the intermediates were characterized in detail by spectral analysis. PEG‐TX possesses absorption characteristics similar to the parent TX. The one‐component photoinitiating nature of the photointiator was demonstrated by photopolymeization of several hydrophilic vinyl monomers, such as acrylic acid, acrylamide, 2‐hydroxyethyl acrylate, and 1‐vinyl‐2‐pyrrolidone. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2109–2114, 2010  相似文献   

5.
The reaction of N‐methylimidazole (N‐MeIm) and N‐butylimidazole (N‐BuIm) with the complexes [PdCl2(PPh2py–P,N)] and [PdCl2(PPh2Etpy–P,N)] in the presence of NH4PF6 under N2 at room temperature afforded four new cationic Pd(II) complexes [PdCl(PPh2py–P,N)(N‐MeIm)](PF6) ( 1 ), [PdCl(PPh2py–P,N)(N‐BuIm)](PF6) ( 2 ), [PdCl(PPh2Etpy–P,N)(N‐MeIm)](PF6) ( 4 ) and [PdCl(PPh2Etpy‐P,N)(N‐BuIm)](PF6) ( 5 ) in good yields, where PPh2py is 2‐(diphenylphosphino)pyridine and PPh2Etpy is 2‐{2‐(diphenylphosphino)ethyl}pyridine). The complexes were fully characterized. The catalytic activities of these complexes were investigated for Suzuki–Miyaura cross‐coupling reactions at room temperature. Complex 2 exhibited excellent activity compared to other analogs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
7.
In the salt 1‐methylpiperazine‐1,4‐diium bis(dihydrogen phosphate), C5H13N22+·2H2PO4, (I), and the solvated salt 2‐(pyridin‐2‐yl)pyridinium dihydrogen phosphate–orthophosphoric acid (1/1), C10H9N2+·H2PO4·H3PO4, (II), the formation of O—H...O and N—H...O hydrogen bonds between the dihydrogen phosphate (H2PO4) anions and the cations constructs a three‐ and two‐dimensional anionic–cationic network, respectively. In (I), the self‐assembly of H2PO4 anions forms a two‐dimensional pseudo‐honeycomb‐like supramolecular architecture along the (010) plane. 1‐Methylpiperazine‐1,4‐diium cations are trapped between the (010) anionic layers through three N—H...O hydrogen bonds. In solvated salt (II), the self‐assembly of H2PO4 anions forms a two‐dimensional supramolecular architecture with open channels projecting along the [001] direction. The 2‐(pyridin‐2‐yl)pyridinium cations are trapped between the open channels by N—H...O and C—H...O hydrogen bonds. From a study of previously reported structures, dihydrogen phosphate anions show a supramolecular flexibility depending on the nature of the cations. The dihydrogen phosphate anion may be suitable for the design of the host lattice for host–guest supramolecular systems.  相似文献   

8.
A new cationic triazole‐based metal–organic framework encapsulating Keggin‐type polyoxometalates, with the molecular formula [Co(BBPTZ)3][HPMo12O40]?24 H2O [compound 1 ; BBPTZ=4,4′‐bis(1,2,4‐triazol‐1‐ylmethyl)biphenyl] is hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. The structure of compound 1 contains a non‐interpenetrated 3D CdSO4 (cds)‐type framework with two types of channels that are interconnected with each other; straight channels that are occupied by the Keggin‐type POM anions, and wavelike channels that contain lattice water molecules. The catalytic activity of compound 1 in the oxidative desulfurization reaction indicates that it is not only an effective and size‐selective heterogeneous catalyst, but it also exhibits distinct structural stability in the catalytic reaction system.  相似文献   

9.
10.
An efficient strategy for comprehensive utilization of the conjugated sulfonium salt photoacid generator (PAG), namely, 3‐{4‐[4‐(4‐N,N′‐diphenylamino)‐styryl]phenyl}phenyl dimethyl sulfonium hexafluoroantimonate, was developed through photoinitiated cationic photopolymerization (CP) of epoxides and vinyl ether upon exposure to near‐UV and visible light‐emitting diodes (LEDs; e.g., 365, 385, 405, and 425 nm). Photochemical mechanisms were investigated by UV–vis spectra, molecular orbital calculations, fluorescence, cyclic voltammetry, and electron spin resonance spin‐trapping analyses. Compared with commercial PAGs, the prepared conjugated sulfonium salt generated H+, which can be used as photoinitiator. Moreover, the fluorescent byproducts from photodecomposition can be used as photosensitizer of commercial iodonium salt in the photoinitiating systems of CP. These novel D‐π‐A type sulfonium‐based photoinitiating systems are efficient (epoxide conversion = 85–90% and vinyl conversion >90%; LEDs upon exposure to 365–425 nm) even in low‐concentration initiators (1%, w/w) and low curing light intensities (10–40 mW cm?2). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2722–2730  相似文献   

11.
A new strategy for the three‐component addition of halide anions and acetylenes to donor–acceptor cyclopropanes (DACs) is presented. This reaction, which occurs with high E selectivity, is promoted by gallium(III) salts and based on the 1,2‐zwitterionic reactivity of DACs. It opens up a new group of processes involving DACs. The reaction occurs readily with a broad range of substrates and is tolerant of various functional groups. This methodology makes it possible to assemble highly functionalized vinyl halides, which are very convenient building blocks in organic synthesis. A possible mechanism of this reaction and its stereochemical aspects are discussed in detail.  相似文献   

12.
The aqueous solution behavior and thermoreversible gelation properties of pyridine‐end‐functionalized poly(ethylene glycol)–poly(L ‐lactide) (PEG–(PLLA)8–py) star block copolymers in the presence of coordinating transition metal ions were studied. In aqueous solutions, the macromonomers self‐assembled into micelles and micellar aggregates at low concentrations and formed physically crosslinked, thermoreversible hydrogels above a critical gel concentration (CGC) of 8% w/v. In the presence of transition metal ions like Cu(II), Co(II), or Mn(II), the aggregate dimensions increased. Above the CGC, the gel–sol transition shifted to higher temperatures due to the formation of additional crosslinks from intermolecular coordination complexes between metal ions and pyridine ligands. Furthermore, as an example, PEG–(PLLA)8–py hydrogels stabilized by Mn(II)–pyridine coordination complexes were more resistant against degradation/dissolution when placed in phosphate buffered saline at 37 °C when compared with hydrogels prepared in water. Importantly, the stabilizing effect of metal–ligand coordination was noticeable at very low Cu(II) concentrations, which have been reported to be noncytotoxic for fibroblasts in vitro. These novel PEG–(PLLA)8–py metallo‐hydrogels, which are the first systems to combine metal–ligand coordination with the advantageous properties of PEG–PLLA copolymer hydrogels, are appealing materials that may find use in biomedical as well as environmental applications like the removal of heavy metal ions from waste streams. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
14.
A stable dimeric mono‐coordinated NHC–Pd(II) complex with bridging iodine atoms was synthesized and characterized by single‐crystal X‐ray diffraction. It has been successfully applied to the Suzuki–Miyaura cross‐coupling reaction under aerobic conditions. Good to excellent yields were obtained in most cases with the addition of H2O. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Polyethylene glycols (PEGs) with different molecular weights (Mw = 200, 400, 1000) were phosphorylated to their bis‐diphenyl phosphinite derivatives as stable solids which are melted in the range 140–160°C. These phosphorylated PEGs were used as ligands and reducing agents to generate nano‐Pd(0) catalysts in 2.5–8.3 nm. The nano‐Pd(0) particles supported on phosphorylated PEG200 were applied for the efficient Heck–Mizoroki carbon–carbon coupling reactions of ArX (X = Cl, Br, I) at 80–100°C under solvent‐free conditions and for the Suzuki–Miyaura coupling reaction in ethanol at 70°C. The catalyst was recycled easily and reused for several runs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Matrix‐assisted laser desorption ionization mass spectrometry imaging (MALDI‐MSI) visualizes the distribution of phospho‐ and glycolipids in tissue sections. However, C=C double‐bond (db) positional isomers generally cannot be distinguished. Now an on‐tissue Paternò–Büchi (PB) derivatization procedure that exploits benzaldehyde as a MALDI‐MSI‐compatible reagent is introduced. Laser‐induced postionization (MALDI‐2) was used to boost the yields of protonated PB products. Collision‐induced dissociation of these species generated characteristic ion pairs, indicative of C=C position, for numerous singly and polyunsaturated phospholipids and glycosphingolipids in mouse brain tissue. Several db‐positional isomers of phosphatidylcholine and phosphatidylserine species were expressed with highly differential levels in the white and gray matter areas of cerebellum. Our PB‐MALDI‐MS/MS procedure could help to better understand the physiological role of these db‐positional isomers.  相似文献   

17.
A novel one‐component type II polymeric photoinitiator, poly(vinyl alcohol)–thioxanthone (PVA–TX), is synthesized by a simple acetalization process and characterized. PVA–TX enables photopolymerization of methyl methacrylate and acrylamide in both organic and aqueous media. Photopolymerization proceeds even in the absence of a co‐initiator since PVA–TX possesses both chromophoric and hydrogen donating sites in the structure.

  相似文献   


18.
Model catalysts for CO2/epoxide copolymerization based on Co(III) complexes were studied, with focus on the preference of their alternative isomers, cisβ vs. trans. The systems range from model structures without the co‐catalyst, as derived from crystallographic data, to complex models with two  (CH2)4N+R3 co‐catalyst chains (R = Me, Bu) grafted onto a Co(III)–salcy core. To explore the conformational space of the latter complexes, a computational protocol was developed, combining a systematic model‐building approach with static and molecular dynamics calculations, and multilevel energy assessment (PM7 and DFT). Results demonstrate an influence of the co‐catalyst on the relative stability of the isomers. The cisβ isomer is preferred for complexes without N+‐chains and the cisβtrans isomerization is feasible. Five‐coordinate species and open‐shell electronic configurations are energetically disfavored. The cisβ preference decreases with the introduction and enlargement of  (CH2)4N+R3: both isomers can be populated for R = Me, while the trans isomer is visibly preferred for R = Bu. © 2018 Wiley Periodicals, Inc.  相似文献   

19.
Eight heteroleptic palladium complexes containing both N‐heterocyclic carbenes and NH‐heterocycle azoles (pyrazole and indazole) were synthesized and characterized, and their structures were unambiguously confirmed using single‐crystal X‐ray diffraction. Further investigation of the complexes as catalysts in the Suzuki–Miyaura reaction and Buchwald–Hartwig amination revealed good reactivities for aryl chlorides.  相似文献   

20.
A highly convenient method for the trimethylsilylation of alcohols and phenols via treatment by hexamethyldisilazane in the presence of 1,3–dichloro‐5,5–dimethylhydantoin (DCH) and/or trichloromelamine (TCM) as a catalyst has been developed. A wide variety of hydroxyl groups were selectively protected in CH2Cl2/CH3CN under mild conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号