首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cerium modified sodium bismuth titanate (Na0.5Bi4.5Ti4O15, NBT) piezoelectric ceramics have been prepared by using the conventional mixed oxide method. X‐ray diffraction analysis revealed that the cerium modified NBT ceramics have a pure four‐layer Aurivillius phase structure. The piezoelectric activity of NBT ceramics was found significantly improved by the modification of cerium. The Curie temperature Tc, and piezoelectric coefficient d33 for the NBT ceramics with 0.50 wt% cerium modification were found to be 655 °C, and 28 pC/N respectively. The Curie temperature gradually decreased from 668 °C to 653 °C with the increase of cerium modification. The dielectric spectroscopy showed that the samples possess stable piezoelectric properties, demonstrating practical potential that for high temperature applications. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Nanocrystalline Mn‐doped zinc oxides Zn1−xMnxO (x = 0–0.10) were synthesized by the sol–gel technique at low temperature. The calcination temperature of the as‐prepared powder was found at 350 °C using differential thermal analysis. A thermogravimetric analysis showed that there is a mass loss in the as‐prepared powder till 350 °C and an almost constant mass till 800 °C. The X‐ray diffraction patterns of investigated nanopowders calcined at 350 °C correspond to the hexagonal ZnO structure without any foreign impurities. The average grain size of the nanocrystal that was observed around ∼25–40 nm from transmission electron microscopy matched well with the crystallite size calculated from the line shape of X‐ray diffraction. The chemical bonding structure in Zn1−xMnxO nanopowders was examined using X‐ray photoelectron spectroscopy techniques, which indicate substitution of Mn2+ ions into Zn2+ sites in ZnO lattice. Micro Raman spectroscopy confirmed the insertion of Mn ions in the ZnO host matrix, and similar wurtzite structure of Zn1−xMnxO (x < 10%) nanocrystals. Temperature‐dependent Raman spectra of the nanocrystals displayed suppression of luminescence and enhancement in full width at half maximum in pure ZnO nanocrystals with increase in temperature, which suggests an enhancement in particle size at elevated temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Chromium oxide gel material was synthesised and appeared to be amorphous in X‐ray diffraction study. The changes in the structure of the synthetic chromium oxide gel were investigated using hot‐stage Raman spectroscopy based upon the results of thermogravimetric analysis. The thermally decomposed product of the synthetic chromium oxide gel in nitrogen atmosphere was confirmed to be crystalline Cr2O3 as determined by the hot‐stage Raman spectra. Two bands were observed at 849 and 735 cm−1 in the Raman spectrum at 25 °C, which were attributed to the symmetric stretching modes of O CrIII OH and O CrIII O. With temperature increase, the intensity of the band at 849 cm−1 decreased, while that of the band at 735 cm−1 increased. These changes in intensity are attributed to the loss of OH groups and formation of O CrIII O units in the structure. A strongly hydrogen‐bonded water H O H bending band was found at 1704 cm−1 in the Raman spectrum of the chromium oxide gel; however, this band shifted to around 1590 cm−1 due to destruction of the hydrogen bonds upon thermal treatment. Six new Raman bands were observed at 578, 540, 513, 390, 342 and 303 cm−1 attributed to the thermal decomposed product Cr2O3. The use of the hot‐stage Raman spectroscopy enabled low‐temperature phase changes brought about through dehydration and dehydroxylation to be studied. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The formation of solid solution and ZrO2 phase stabilization were investigated by Raman spectroscopy and X‐ray diffraction (XRD) in calcium‐containing and cadmium‐containing zirconium oxide samples heated at 1073 K in air. The adopted preparation procedure led to the incorporation of calcium and cadmium in solid solution into the zirconia structure. The solid solution favored the tetragonal and cubic zirconia phases at the expense of the thermodynamically stable monoclinic modification. Combined macro‐ and micro‐Raman spectroscopy disclosed that instead of forming a homogeneous phase t″, intermediate between the tetragonal t′ and the cubic phase, the tetragonal and cubic phases coexisted in the range 9.49–13.89 mol% for Ca and 11.88–17.23 mol% for Cd. At higher dopant contents the cubic form stabilized. The impurity content necessary to stabilize the high‐symmetry phases was defined. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Polycrystalline BiFeO3 (BFO) thin films were successfully grown on Pt/Ti/SiO2/Si(100) and SrTiO3 (STO) (100) substrates using the chemical solution deposition (CSD) technique. X‐ray diffraction (XRD) patterns indicate the polycrystalline nature of the films with rhombohedrally distorted perovskite crystal structure. Differential thermal analysis (DTA) was performed on the sol–gel‐derived powder to countercheck the crystal structure, ferroelectric (FE) to paraelectric (PE) phase transition, and melting point of bismuth ferrite. We observed a significant exothermic peak at 840 °C in DTA graphs, which corresponds to an FE–PE phase transition. Raman spectroscopy studies were carried out on BFO thin films prepared on both the substrates over a wide range of temperature. The room‐temperature unpolarized Raman spectra of BFO thin films indicate the presence of 13 Raman active modes, of which five strong modes were in the low‐wavenumber region and eight weak Raman active modes above 250 cm−1. We observed slight shifts in the lower wavenumbers towards lower values with increase in temperature. The temperature‐dependent Raman spectra indicate a complete disappearance of all Raman active modes at 840 °C corresponding to the FE–PE phase transitions. There is no evidence of soft mode phonons. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
In this investigation, Mn3O4 spinel-type oxide was synthesized at low temperature using the Pechini process. We employed a sol-gel route, in which a solution of Mn(II) in a mixture of citric acid and ethylene glycol was heated to form a polymeric precursor, followed by annealing at lower temperature. The oxide obtained was identified by X-ray diffraction, scanning electron spectroscopy, and Raman spectroscopy. The results revealed that the formation of Mn3O4 hausmannite structure with a minor secondary phase of MnSO4 occurred at or above 280 °C. The sample powder consisted of fine grains with homogeneous morphology and an average size close to 1 μm was obtained. This new preparation procedure yielded an electrode oxide which appears to be a promising cathode material for fuel cells and metal-air batteries.  相似文献   

7.
A self‐phase‐locked degenerate femtosecond optical parametric oscillator (OPO) based on the birefringent nonlinear material, bismuth triborate, BiB3O6, synchronously‐pumped by a Kerr‐lens‐mode‐locked Ti:sapphire laser at 800 nm is described. By exploiting versatile phase‐matching properties of BiB3O6, including large spectral and angular acceptance for parametric generation and low group velocity dispersion in the optical xz plane, stable self‐phase‐locked degenerate OPO operation centered at 1600 nm is demonstrated using collinear type I (eoo) interaction in a 1.5‐mm crystal at room temperature. The degenerate OPO output spectrum extends over 46 nm (∼5.4 THz) with 190 fs pulse duration for input pump pulses of 155 fs with a bandwidth of 7 nm. Phase coherence between the pump and degenerate output is verified using f‐2f interferometry, and discrete frequency beats caused by different carrier‐envelope‐offset frequencies are measured using radio frequency measurements. Photo shows a 1.5‐mm BiB3O6 crystal used as a nonlinear gain medium in a degenerate self‐phase‐locked femtosecond OPO operating at room temperature. The green beam is the result of non‐phase‐matched sum‐frequency mixing between the pump light and the sub‐harmonic OPO field at degeneracy.  相似文献   

8.
Reaction of 3‐methyl‐2(1H)‐quinoxalinone ( 4) and 2(1H)‐quinoxalinone ( 5) with 5,6‐anhydro‐1,2‐O‐isopropylidene‐ α‐D ‐glucofuranose 6 gives the unexpected O‐glucoquinoxalines derivatives by the intermediary novel intramolecular rearrangement of 5,6‐anhydro‐1,2‐O‐isopropylidene‐α‐D ‐glucofuranose to the corresponding 3,6‐anhydro form. The obtained O‐glucoquinoxalines 7,8 were identified by NMR spectroscopy. The X‐ray crystal structures have been determined at room temperature. Moreover, a solid–solid phase transition has been detected at 198.9 K for O‐glucoquinoxalines 7 and the structure of the low‐temperature phase has been solved at 188 K. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The influence of irradiation by 30 keV nitrogen ions with a fluence 1×1018N+·cm-2 on the crystal structure of single crystal Bi2Sr2CaCu2O7-y was investigated by means of X-ray photoelectron spectroscopy and X-ray diffraction. The irradiation caused a transformation from Bi2Sr2CaCu2O7-y (2212 phase) to Bi2Sr2CuO5-x (2201 phase). It was observed that. a small amount of metallic bismuth with an average thickness of about 6.3nm appeared after the irradiation. The possible reaction mechanism under nitrogen-ion irradiation was discussed.  相似文献   

10.
We report preparation of phase pure BiFeO3 thin films on glass, ITO and Si(100) substrates through chemical route using spin coating technique. Sol-gel process was adopted to prepare the films using bismuth nitrate and iron nitrate as precursors. X-Ray diffraction and Raman spectroscopy studies revealed amorphous nature of the as deposited films. Rhombohedral crystalline phase of BiFeO3 evolved on annealing the films at 500°C, but with Bi2Fe4O9 and Bi24Fe2O39 as impurity phases. Increasing the annealing temperature to 550°C caused a drastic reduction of the impurity phases and at 600°C, the films were phase-pure BiFeO3. Micro Raman spectra showed features consistent with the reported characteristic peaks of BiFeO3 crystalline phase for films annealed at 500 and 550°C. Crystallite size obtained from X-ray diffraction line width analysis are within 30 to 40 nm. Atomic force microscopy (AFM) however showed grain size of ∼192 nm, indicating polycrystalline nature of the grains.   相似文献   

11.
Calcium carbonate (CaCO3)/iron oxide composites were synthesized through a simple one‐step impregnation procedure by mixing iron oxide nanoparticles (γ‐Fe2O3 and Fe3O4) of about 6 nm in size and CaCO3 microparticles (Φ = 2 µm–8 µm, vaterite phase). The morphology and structural properties of CaCO3, iron oxide nanoparticles and CaCO3/iron oxide composites were characterized as a function of low iron content (0 %w to 3.2 %w) by scanning electron microscopy and transmission electron microscopy, X‐ray diffraction and 57Fe Mössbauer spectrometry. The phase transformations induced by thermal treatment and laser irradiation were investigated in situ by X‐ray thermodiffraction (XRTD) and Raman spectroscopy. We have shown that the phase transformations observed by XRTD are also observed under laser irradiation as a consequence of the absorption of the laser irradiation by iron oxide nanoparticles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The influence of ball milling and subsequent sintering of a 3:5 molar mixture of Y2O3 and α-Fe2O3 on the formation of nanocrystalline Y3Fe5O12 (YIG) particles is studied. Pre-milling the mixture for 100 h lowers the onset temperature at which the material forms to 900°C which is 200°C lower than that reported when a similar mixture of reactants was premilled for shorter times. A single-phased nanocrystalline Y3Fe5O12 phase develops as a sole product when the pre-milled mixture is heated at 1,000°C (12 h). This temperature is ~300–400°C lower than those used to prepare the material conventionally. The bulk and surface crystal structure of the nanoparticles is studied with X-ray diffraction, Mössbauer spectroscopy, Atomic Force Microscope (AFM) and X-ray photoelectron spectroscopy.  相似文献   

13.
Calcination of hydrated iron salts in the pores of both spherical and rod‐shaped mesoporous silica nanoparticles (NPs) changes the internal structure from an ordered 2D hexagonal structure into a smaller number of large voids in the particles with sizes ranging from large hollow cores down to ten nanometer voids. The voids only form when the heating rate is rapid at a rate of 30 °C min?1. The sizes of the voids are controlled reproducibly by the final calcination temperature; as the temperature is decreased the number of voids decreases as their size increases. The phase of the iron oxide NPs is α‐Fe2O3 when annealed at 500 °C, and Fe3O4 when annealed at lower temperatures. The water molecules in the hydrated iron (III) chloride precursor salts appear to play important roles by hydrolyzing Si? O? Si bonding, and the resulting silanol is mobile enough to affect the reconstruction into the framed hollow structures at high temperature. Along with hexahydrates, trivalent Fe3+ ions are assumed to contribute to the structure disruption of mesoporous silica by replacing tetrahedral Si4+ ions and making Fe? O? Si bonding. Volume fraction tomography images generated from transmission electron microscopy (TEM) images enable precise visualization of the structures. These results provide a controllable method of engineering the internal shapes in silica matrices containing superparamagnetic NPs.  相似文献   

14.
The solid solutions of bismuth–vanadate were prepared by the conventional solid-state reaction. The sample characterization and the study of phase transition were done by using FT-IR, X-ray diffraction (XRD) and DSC measurements. AC impedance measurements proved that the oxide ion conductivity predominantly arises from the grain and grain boundary contributions as two well-defined semicircles are clearly seen along with an inclined spike. The electrical conductivity of Bi2O3–V2O5 has been studied at different temperatures for various molar ratios. The isothermal conductivity increases with an increase in the concentration of V2O5 due to the vacancy migration phenomenon. It has been found that the conductivity of different compositions of Bi2O3–V2O5 increases and shows a jump in the temperature range 230–260°C due to the phase transition of BiVO4 from monoclinic scheelite type to that of tetragonal scheelite type. The endothermic peak in DSC at around 260°C reveals the phase transition, which is also confirmed by the XRD and FT-IR analysis. The XRD patterns confirmed the monoclinic structure of BiVO4.  相似文献   

15.
16.
The phase transformation in nano‐crystalline dysprosium sesquioxide (Dy2O3) under high pressures is investigated using in situ Raman spectroscopy. The material at ambient was found to be cubic in structure using X‐ray diffraction (XRD) and Raman spectroscopy, while atomic force microscope (AFM) showed the nano‐crystalline nature of the material which was further confirmed using XRD. Under ambient conditions the Raman spectrum showed a predominant cubic phase peak at 374 cm−1, identified as Fg mode. With increase in the applied pressure this band steadily shifts to higher wavenumbers. However, around a pressure of about 14.6 GPa, another broad band is seen to be developing around 530 cm−1 which splits into two distinct peaks as the pressure is further increased. In addition, the cubic phase peak also starts losing intensity significantly, and above a pressure of 17.81 GPa this peak almost completely disappears and is replaced by two strong peaks at about 517 and 553 cm−1. These peaks have been identified as occurring due to the development of hexagonal phase at the expense of cubic phase. Further increase in pressure up to about 25.5 GPa does not lead to any new peaks apart from slight shifting of the hexagonal phase peaks to higher wavenumbers. With release of the applied pressure, these peaks shift to lower wavenumbers and lose their doublet nature. However, the starting cubic phase is not recovered at total release but rather ends up in monoclinic structure. The factors contributing to this anomalous phase evolution would be discussed in detail. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Aluminium oxide has been synthesized by co-precipitation technique at different annealing temperature. Powder XRD confirms the formation of α-Al2O3 with rhombohedral crystal structure having lattice constant a = 4.76 Å and b = 12.99 Å by the Scherer formula, the average crystallite size is estimated to be 66 nm. The scanning electron microscope results expose the fact that the α-Al2O3 nanomaterials are seemingly porous in nature and highly agglomerated. Chemical composition of aluminium oxide is confirmed by energy dispersive spectroscopy. The molecular functional group is confirmed by FTIR. Optical absorption of α-Al2O3 has been studied in the UV–vis region and its direct band gap is estimated to be 5.97 eV. This study involves the structural and phase transition of Al2O3 and also indicates that α-Al2O3 has considerable properties, deserving further investigation for the energetic materials with excellent properties for the possibility of using thin-layer α-Al2O3 as a thermo luminescence material.  相似文献   

18.
We have studied the lattice vibrational modes of Zr‐substituted Bi4Ti3O12 ceramics using micro‐Raman spectroscopy. Replacement of Zr at the Ti site in the perovskite block is found from the increase in the lattice parameters as a function of Zr contents. Combined X‐ray diffraction patterns and Raman analysis suggested less than 40 mole% Zr solubility in Bi4Ti3O12. At 40 mole% of Zr substitution or above, the unreacted monoclinic‐phase ZrO2 is observed in the X‐ray diffraction patterns and the Raman spectra. The incorporation of Zr in Bi4Ti3O12 reduces the soft mode wavenumber and the transition temperature. Moreover, temperature dependent studies confirmed the ferroelectric to paraelectric transition in Bi4Ti3O12 at about 675 °C. On increasing the Zr content up to 40% on the Ti sites of Bi4Ti3O12, a systematic decrease in the phase transition temperature from 675 to 630 °C was observed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The local structure and lattice dynamics in cubic Y2O3 were studied at the Y K‐edge by X‐ray absorption spectroscopy in the temperature range from 300 to 1273 K. The temperature dependence of the extended X‐ray absorption fine structure was successfully interpreted using classical molecular dynamics and a novel reverse Monte Carlo method, coupled with the evolutionary algorithm. The obtained results allowed the temperature dependence of the yttria atomic structure to be followed up to ~6 Å and to validate two force‐field models.  相似文献   

20.
Bi2Cu0.1?xAlxV0.9O5.35?x/2?δ, 0.02 ≤ x ≤ 0.08, were synthesized by standard solid-state reaction route. Structural and electrical properties of samples are characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), Fourier transform infrared (FT-IR) and alternating current (AC) impedance spectroscopy. The tetragonal γ′ phase structure is preserved to room temperature with compound x = 0.02. The stabilization of β orthorhombic phase is observed for compositions 0.04 ≤ x ≤ 0.05. As the Al content increases, the monoclinic α phase is evidenced for materials 0.06 ≤ x ≤ 0.08. The electrical investigation of Bi2Cu0.1?xAlxV0.9O5.35?x/2?δ system has been performed in the frequency range from 20 Hz to 1 MHz using AC impedance spectroscopy. The impedance spectra indicate the two semicircle arcs associated with the bulk and grain boundary resistances at temperature below ~450 C. The conductivity generally changes when Al is substituted. The highest conductivity at 300 C (σ = 2.55 × 10?4 S cm?1) is shown for x = 0.02.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号