首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 626 毫秒
1.
针对常规移动床煤热解工艺所面临的无法处理粉煤,轻质焦油产率低、焦油品质差等问题,开发了折流内构件移动床热解工艺来调控气固两相的热质传递和热解反应过程。利用多段集气系统可及时地收集煤在不同热解阶段释放出的油气产物,研究了淖毛湖煤在不同温度和停留时间下的热解行为特性和产物品质。结果表明,折流内构件强化了颗粒间的热量和挥发分物质的传递,使其可处理0.4-6.0 mm的粉煤;在热解温度550℃,停留时间为3.0 h时,热解焦油产率达到最高为11.38%(占格金焦油产率的86.87%,质量分数),焦油馏分中低于360℃的轻质组分质量分数为85.0%;随着停留时间的延长,热解气中的H2体积分数从22.1%增加到了35.1%,CO体积分数从8.0%增加到了9.5%;在第一和第二层反应器中的焦油产率随停留时间的延长而增加,在第三和第四层反应器内当停留时间为2.0 h时焦油产率最大;随着床层数的增加,焦油模拟蒸馏馏分中的轻质组分含量增加,焦油脂肪烃化合物含量减小,而单环芳烃和二环芳烃的含量逐渐增加。  相似文献   

2.
焦炉煤气甲烷重整制氢热力学分析和实验研究(英文)   总被引:1,自引:0,他引:1  
对焦炉煤气甲烷部分氧化重整热力学进行分析,考察反应温度、CH4/O2摩尔比及水蒸气加入量等因素对重整性能的影响,并分析焦炉煤气原始氢含量对其部分氧化重整性能的影响.分析结果表明甲烷转化率均随CH4/O2摩尔比和水蒸气加入量的增大以及反应温度的升高而增大.在CH4/O2摩尔比1.7-2.1,温度825-900℃及压力1.01×105Pa的反应条件下,可得较好重整性能;甲烷转化率,氢及一氧化碳的选择性分别为91.0%-99.9%,87.0%-93.4%和100%-107%,重整后得到的氢量增大到原始氢量的1.95-2.05倍,每摩尔焦炉煤气消耗的热量仅为2.94J,同时得出在CH4/O2摩尔比2,温度825-900℃及1.01×105Pa条件下,往焦炉煤气内添加体积分数为2%-4%的水蒸气时重整性能得到较大提高;重整后甲烷转化率、氢及一氧化碳选择性分别由92.6%、87.2%、104%增大到98.6%、96.4%、107%.并在BaCo0.7Fe0.2Nb0.1O3-δ透氧膜反应器上研究NiO/MgO固溶体催化剂焦炉煤气部分氧化重整性能.结果表明该重整反应效果较好,于875℃下获得16.3mL.cm-2.min-1透氧量,95%甲烷转化率及80.5%氢和106%一氧化碳选择性.且所得实验结果与热力学分析结果符合较好,表明NiO/MgO固溶体催化剂有较好的催化重整性能.  相似文献   

3.
微细腔内重整积炭会引起催化剂失活和孔道堵塞,甲烷低温自热重整技术的提出,既有利于实现微燃烧器中甲烷的持续稳定燃烧,又能有效降低热点和减少积炭。通过热力学分析,探讨常压下反应温度低于973K时微细腔内自热重整积炭的影响因素及重整特性。结果表明,温度、空碳比及水碳比对积炭生成有重要影响。微细腔内积炭含量随温度升高先增大后减小;贫氧环境下,空碳比和水碳比的增加不仅对减少积炭有效,对氢气产生也有利;同时,甲烷自热重整系统与无水系统相比减碳性能优越。甲烷质量流量为6.6g/h、空碳比和水碳比分别为2和1时,积炭产生的温度为680K~850K,并在785K达到积炭质量分数的最大值为0.66%,此时甲烷转化率和氢气质量含量分别为53.43%和2.37%;且消碳对应的空碳比和水碳比分别约为2.4和1.1。  相似文献   

4.
采用流化床燃烧技术,使用自制Cu/γ-Al2O3颗粒作为催化剂床料,实验研究了超低浓度甲烷在流化床中催化燃烧时床层温度(450~700℃)、流化风速比ω(1.5~4)、进气甲烷体积分数(0.3%~2%)等对甲烷燃烧效率的影响。结果表明,床层温度是影响甲烷催化燃烧反应的关键因素,甲烷的转化率随着床层温度的升高而增加;床层温度达到650℃时,甲烷含量低于1%的超低浓度甲烷其转化率超过95%,继续提高床层温度至700℃且控制流化风速比ω≤2可以实现甲烷的完全转化;甲烷转化率随着流化风速和进气甲烷浓度的增加而降低,当ω>3.5时,温度对甲烷转化的影响减弱,未燃烧的甲烷含量增大。动力学实验发现,床层温度较低时,催化反应受动力学控制,测得催化反应的活化能Ea为1.26×105J/mol,反应级数m为0.73,当温度t>450℃时,扩散作用影响显著,反应级数增大。  相似文献   

5.
在固定床反应器中,以正己烷为超临界介质,研究了三种Co催化剂(浸渍、喷雾干燥、双模催化剂)上的F-T合成反应行为。在相同的Co质量分数下,喷雾干燥催化剂和双模催化剂的活性接近,都高于浸渍催化剂。在喷雾干燥催化剂上CO的转化率显著高于浸渍催化剂。喷雾干燥催化剂F-T产物中具有高的低碳选择性和低的1-烯烃质量分数,然而在相近的CO转化率下,喷雾干燥和浸渍催化剂具有类似的1-烯烃质量分数。对于浸渍催化剂,当Co质量分数从5%增加到15%,CO转化率从8.3%增加到43.6%。含Co5%的催化剂比质量分数为10%、15%、20%催化剂的甲烷选择性低2.0%~3.0%,但产物中1-烯烃的质量分数明显要高。  相似文献   

6.
为了实现微燃烧器内甲烷持续稳定燃烧,要求进一步深入研究原料气中含湿量变化对微细腔甲烷湿空气低温(小于973 K)重整反应的影响.于此,本文通过热力学方法分析了 0.1 MPa下一定温度时,恒定原料气流量和恒定空碳比两种工况中,含湿量在欠氧和低温环境中对微细腔甲烷自热重整反应中积炭、甲烷转化、产氢特性及反应过程的影响.结果表明:微细腔内甲烷质量流量一定时,随着含湿量增加,积炭逐渐减小,甲烷转化率先减小后增加,氢气则一直随之增加.体系中甲烷的转化以生成CO2为主,CO的选择率随含湿量增加先增加后减小,CO2选择率则一直增加;增加含湿量会使反应后体系中水的含量增加,也会促使反应过程中体系消耗的水量最终大于生成的水量.在含湿量不超过空气量的反应条件下,两种工况中反应前后水质量分数的变化量均在含湿量达280 g·kg-1后显示出体系以消耗水为主,且原料气中湿空气的含湿量均应满足最低为350 g·kg-1,才有利于反应过程中减少积炭产生和促进重整反应,当达到这一条件时,恒定的空碳比在获得较高的甲烷转化率和氢气产率上更具优势.  相似文献   

7.
以γ-Al2O3为载体,采用等体积浸渍法制备了不同Ce含量的Ni-Ce/Al2O3催化剂,并考察了其浆态床CO甲烷化反应性能。借助XRD、BET、H2-TPR及CO-TPD等对催化剂进行了表征分析,研究了催化剂的微观结构与甲烷化性能之间的关系。结果表明,助剂Ce的引入能够加强Ni物种与载体之间的相互作用、增强活性组分Ni对CO的吸附能力。随着Ce含量的升高,Ni物种在载体表面的分散度提高、Ni晶粒粒径减小,催化剂的比表面积及与载体相互作用较强的β-NiO相对含量先升后降。催化剂的浆态床甲烷化活性随Ce含量的升高呈现规律性的变化,CO转化率和CH4时空收率先增加后略有下降,当Ce含量为4%(质量分数)时,催化剂甲烷化活性最佳。  相似文献   

8.
采用流化床燃烧技术,使用自制Cu/γ-Al2O3颗粒作为催化剂床料,实验研究了超低浓度甲烷在流化床中催化燃烧时床层温度(450~700℃)、流化风速比ω(1.5 ~4)、进气甲烷体积分数(0.3% ~2%)等对甲烷燃烧效率的影响.结果表明,床层温度是影响甲烷催化燃烧反应的关键因素,甲烷的转化率随着床层温度的升高而增加;床层温度达到650℃时,甲烷含量低于1%的超低浓度甲烷其转化率超过95%,继续提高床层温度至700℃且控制流化风速比ω≤2可以实现甲烷的完全转化;甲烷转化率随着流化风速和进气甲烷浓度的增加而降低,当ω>3.5时,温度对甲烷转化的影响减弱,未燃烧的甲烷含量增大.动力学实验发现,床层温度较低时,催化反应受动力学控制,测得催化反应的活化能Eα为1.26×105 J/mol,反应级数m为0.73,当温度t>450℃时,扩散作用影响显著,反应级数增大.  相似文献   

9.
分析了以石油焦为原料采用复合活化工艺制备的吸附剂的孔结构特性。发现吸附剂微孔含量在90%以上并且主要集中于1 nm~2 nm之间,是富含纳米孔的吸附材料。甲烷在此吸附剂上的吸附研究表明,在25 ℃,3.5 MPa的条件下,甲烷质量吸附量超过14.0%;有效体积吸附量超过120?V/V(吸附甲烷的体积/容器的体积)。甲烷在富纳米孔炭质吸附剂上的等温吸附曲线表明,吸附类型属于Ⅰ类吸附,符合微孔填充理论;等压吸附曲线表明,低温有利于体积吸附量的增加;吸附剂中水分的增加对吸附有不利的影响。  相似文献   

10.
刘建军  杨仲卿  张力 《燃料化学学报》2014,42(10):1253-1258
采用共浸渍法制备了不同Ni含量的Cu/γ-Al2O3催化剂,在固定床反应器上考察了该催化剂在含硫(SO2,0.01%,体积分数)气氛中对低浓度甲烷(3%)的催化燃烧活性及抗硫中毒稳定性。结果表明,SO2会使Cu/γ-Al2O3催化剂发生硫中毒,Ni的加入可增强其抗硫性能,而且随着Ni含量的增加,其抗硫性改善效果越明显。在Ni含量为10%的Cu/γ-Al2O3催化剂上反应10 h后,甲烷转化率仍可保持在96%以上。SEM、XRD和TPD表征结果显示,Ni的加入促使Cu/γ-Al2O3催化剂表面生成NiAl2O4尖晶石相,提高了催化剂的稳定性。随着Ni含量的增加,催化剂表面Lewis酸性降低,吸附SO2的能力减弱,可延缓催化剂硫中毒,同时也缩短了CO2分子在催化剂表面的停留时间,从而提高了甲烷催化燃烧效率。  相似文献   

11.
氧化性气氛下流化床中煤的热解脱硫及硫的分布   总被引:5,自引:2,他引:5  
兖州(YZ)原煤,在氧气体积分数为3.0%、5.6%、8.7%,热解温度400℃~800℃, 热解停留30min,在流化床反应器中进行了热解脱硫实验。结果表明,兖州煤在3.0%O2,600℃时的脱硫效果最佳,可达70%;此时的黄铁矿硫全部脱除,而有机硫也可脱除60%以上。而相同温度惰性气氛下的总硫和有机硫的脱除率则分别为25%和15%。在氧化性气氛下,脱除的硫主要分布在焦油中;随着氧气体积分数的提高,半焦收率下降的很快,下降幅度要比脱硫率的增加幅度大。因此,氧气体积分数过高,在选择性断裂C—S键的同时,也使C—C键发生了断裂。  相似文献   

12.
在氧气体积分数分别为3.0%、5.6%、 8.7%的O2 N2混合气,热解温度500℃~800℃, 停留时间30min下,对吴家坪煤在流化床反应器热解过程中的含硫气体进行了分析。热解过程中主要的含硫气体是H2S、COS和SO2, 且它们的逸出规律一致:随着温度和氧气体积分数的增高, 逸出速率加快。 氧气体积分数对煤中的H2S、COS的影响是相似的, 随着氧气体积分数增加, 相对于3.0% O2 N2 气氛, H2S和COS的逸出量占气相中总硫的比例在5.6% O2 N2 气氛下降, 在8.7% O2 N2 气氛下又有所上升; 而氧气体积分数对SO2的影响与之相反, 在5.6% O2 N2 气氛下, 气相中93%以上是以SO2形式逸出的, 在8.7% O2 N2 气氛下, SO2的比例又下降很多。这是由于8.7% O2 N2 气氛下, 更多的氧气参与了C—C键断裂的反应, 使脱去的硫转化到焦油中,从而也生成了大量的CO,使得在8.7% O2 N2气氛下CO/SO2比明显大于5.6% O2 N2气氛下的。  相似文献   

13.
气化介质对生物质多孔床料流化床气化产气特性的影响   总被引:1,自引:0,他引:1  
在自制小型常压流化床内采用多孔介质为床料,对生物质进行气化实验,分别考察了富氧气氛下温度和氧气浓度、水蒸气气氛下温度和水蒸气流量及不同种类床料对生物质产气特性的影响。结果表明,多孔床料下气化产气中可燃气体积分数随气化温度的提高而增大;随氧气浓度的增加,产气中H2的体积分数从14.52%增加到19.71%,CO的体积分数从43.41%降低到36.41%;气化剂水蒸气流量对生物质气化影响存在最佳范围;多孔床料种类不同对H2和CO的生成以及对低碳氢化合物(CxHy)的催化裂解强度的促进作用也不同。  相似文献   

14.
两段法甲烷催化氧化制合成气研究   总被引:6,自引:0,他引:6  
提出了一种将甲烷低温催化燃烧和部分氧化相结合制取合成气的新方法 ,考察了反应条件对Pd Pt催化剂上的甲烷低温燃烧反应性能以及Ni-La2 O3 MgAl2 O4 -Al2 O3催化剂上甲烷催化氧化制合成气反应性能的影响。结果表明 :采用两个串联固定床反应器和分段进氧 ,不仅可以使反应原料偏离爆炸极限 ,确保过程的安全操作 ;而且一段反应器采用低温进料 ,通过少量甲烷催化燃烧 ,为二段反应提供含有少量CO2 、H2 O等氧化产物的反应原料。在二段反应器中 ,放热的甲烷部分氧化反应和吸热的蒸汽重整及CO2 重整反应同时进行 ,可避免催化剂床层飞温 ,使反应基本上在绝热恒温条件下进行 ,可用两个串联的固定床反应器实现甲烷部分氧化制合成气反应。在适合的反应条件下 ,甲烷转化率可达 93% ,H2 和CO选择性分别为 97%和 98%。  相似文献   

15.
反应器型式对甲烷低温等离子体转化制C2烃的影响   总被引:2,自引:0,他引:2  
就不同反应器对甲烷常压低温等离子体转化制C2烃的影响进行了研究。结果表明,相同的甲烷停留时间和相同甲烷流率下,反应器A和B中反应的主要产物是乙炔,乙烯和乙烷的含量较少,积炭量较多;而反应器C和D中反应的主要产物为乙烷和丙烷,乙烯和乙炔含量较少,积炭量很少。反应积炭对反应器A中甲烷转化率影响很大,对于产物选择性影响不大,而对反应器C中的反应影响较小。根据产物分布可知,在反应器A和B中,由于电子具有很高的能量和密度,甲烷主要解离为碳原子;而在反应器C及D中,由于电子能量和密度较低,甲烷主要解离为CH3自由基。  相似文献   

16.
介绍了磁稳定床反应器在国际上的首次工业应用,它集成了浆态床、固定床、移动床和流化床等反应器的优点. 通过调整线圈间距、在反应器内设置磁隔栅构件,实现了均匀磁场的放大; 绘制出磁稳定床反应器链式操作相图. 将非晶态Ni优异的加氢性能和磁性与磁稳定床反应器反应过程强化性能相结合,实现了在己内酰胺加氢精制过程的工业应用,并建成5套20~40万吨/年工业装置. 磁性催化剂与磁稳定床反应器相结合,强化了甲烷化、乙炔选择性加氢和烯烃叠合等反应过程,形成了新技术生长点.  相似文献   

17.
在高压连续流动微型反应器上对加氢裂化催化剂进行催速老化实验,用元素分析、傅里叶变换红外光谱(FTIR)、X-光电子能谱(XPS)、热重/微商热重(TG/DTG)等手段考察了不同体积分数的噻吩、吡啶和操作压力对催化剂积炭行为的影响。结果发现:原料中吡啶和噻吩体积分数分别高于0.1%和0.6%时,会导致催化剂积炭明显增加。含吡啶的原料在进行加氢裂化时生成的积炭,主要集中在微孔(<6 nm)中,并会削弱催化剂的酸性中心,尤其是强酸中心。含噻吩原料加氢裂化生成的积炭,存在于不同孔径的孔中,在催化剂表面形成少量机械孔。原料中噻吩体积分数低于0.6%时,噻吩中的硫可以提高催化剂的硫化度使积炭减缓。相同体积分数的吡啶对催化剂积炭的贡献大于噻吩,催化剂比表面积降低更多。提高压力可以显著地降低催化剂的积炭量,减缓比表面的降低,减少酸中心数目的损失,导致微孔(<6 nm)中积炭增多,积炭中石墨型积炭的相对比例增大。  相似文献   

18.
用浸渍法制备了不同钐含量的Ni-Sm_x/SiC催化剂,其中,镍的质量分数为9%,氧化钐的质量分数分别为0、2%、3%、4%、5%、7%。采用常压微型固定床反应器考察了不同催化剂在甲烷二氧化碳重整反应中的催化性能,并用BET、ICP、XRD、H2-TPR、TG-DTA、XPS和TEM等技术对反应前后催化剂进行表征。结果表明,加入钐后,重整反应中甲烷和二氧化碳转化率明显提高。当钐含量为5%时,Ni-Sm5/SiC表现出最好的活性和稳定性,而且反应后催化剂表面积炭量最少。其原因是钐的加入提高了活性组分与载体的相互作用,有效减少了表面积炭、提高了催化剂的稳定性。  相似文献   

19.
采用刀片式不锈钢电极放电反应器,以Ar气为稀释气,研究了等离子体作用下甲烷转化制C2烃的工艺条件。考察了CH4流量、高频电源输入电压和电极间距等参数对甲烷转化率、C2烃选择性、收率和反应表观能耗的影响。结果表明,增加CH4流量,表观能耗随之降低;当输入电压和电极间距较小时,甲烷转化率随输入电压和电极间距的增大而增大,但输入电压和电极间距过大时,C2烃收率明显下降,积碳严重。在CH4流量14 mL/min、Ar气流量60 mL/min、高频电源输入电压22 V、电流0.44 A、电极间距4 mm的优化条件下,甲烷最高转化率为43.1%,C2烃收率、选择性和表观能耗分别为40.1%、93.2%和2.41 MJ/mol。C2烃中不饱和烃的体积分数可达95%以上。  相似文献   

20.
在反应温度550 ℃、空速5 500 h-1、H2S体积分数1.2%下对所研制的钼基催化剂进行了耐硫甲烷化活性评价,考察了反应气中添加H2O对Mo基催化剂耐硫甲烷化活性的影响。结果表明,反应气中添加水对Al2O3负载的Mo基催化剂可造成不可逆失活,而添加Co助剂及采用铈铝复合载体的催化剂其稳定性、活性得到了改善和提高。Co的添加能保护Mo基催化剂上的活性组分MoS2,抑制添加水导致的不可逆失活。当反应气中加入水时,催化剂上主要发生水汽变换反应,且随着水含量升高,水汽变换反应速率增大,会严重影响甲烷化反应的进行。此外,随着水含量的增加,其对催化剂的耐硫甲烷化活性和稳定性的影响程度变大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号