首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
欠膨胀冲击射流具有复杂的激波结构,并伴随产生高幅值的离散频率单音.通过高速摄像获取的纹影图像并结合噪声测量,对欠膨胀冲击射流激波振荡过程、剪切层不稳定波的模态和离散频率单音的产生进行了系列研究.给出了冲击距离为5倍喷嘴出口直径的复杂流动实验结果分析,射流剪切层不稳定波有对称和非对称两种模态,发现不同模态下的离散频率单音...  相似文献   

2.
激波和剪切层相互作用下的超音速射流   总被引:1,自引:0,他引:1       下载免费PDF全文
何枫  杨京龙  沈孟育 《物理学报》2002,51(9):1918-1922
欠膨胀超音速射流处于螺旋模式下的中度欠膨胀时,其入射剪切层的激波具有很高强度,激波和剪切层发生了强烈的相互作用,远场辐射的拢动波出现了大间隔、交错的上下行类似螺旋锥面波形图像,该扰动波具有很强的向上游传播的指向性,导致上游噪声高于垂直喷嘴方向的声压级.而在相对压比较低的低度欠膨胀情况下,或高压比下的高度欠膨胀的情形,入射剪切层激波强度相对较弱,远场辐射没有大间隔、交错的上下行远场辐射 关键词: 超音速射流 啸叫 扰动波 激波 剪切层  相似文献   

3.
激波/边界层干扰对等离子体合成射流的响应特性   总被引:1,自引:0,他引:1       下载免费PDF全文
王宏宇  李军  金迪  代辉  甘甜  吴云 《物理学报》2017,66(8):84705-084705
利用高速纹影系统和数值模拟方法研究了激波/边界层干扰对逆流喷射的等离子体合成射流的响应特性,并揭示了流动控制机理.实验在来流马赫数Ma=3.1的风洞中进行,测试模型采用钝头体和压缩斜坡的组合模型,等离子体合成射流激励器安装在钝头体头部.纹影系统捕捉了放电频率为f=1 kHz和f=3 kHz的激励对附体激波形态和分离激波运动的控制效果.等离子体合成射流使压缩斜坡激波/边界层干扰区域的起始点向下游移动,分离泡尺寸减小,附体激波强度减弱,发生弯曲,再附点移向上游,与此同时分离激波向附体激波逼近.与f=3 kHz激励相比,f=1 kHz激励的射流流量更大,对激波/边界层干扰的影响范围更广、控制效果更好.通过数值模拟,揭示了射流与来流相互作用对下游流场的作用机理:射流与来流相互作用诱导出大尺度旋涡,大尺度旋涡耗散发展增强了近壁面流场的湍流度;压缩斜坡上游近壁面的流场性质发生变化,进而导致了压缩斜坡激波/边界层干扰区域流动的变化.  相似文献   

4.
不同气体组分的PS-PVD射流光谱诊断   总被引:1,自引:0,他引:1  
采用发射光谱分析不同气体组分的等离子喷涂-物理气相沉积(PS-PVD)射流,通过Abel转换得出射流径向各点处的光谱强度,比较和分析射流中不同气体的成分分布。采用多谱线斜率法研究不同气体组分的射流在径向距离上电子温度的变化,通过Hβ谱线的stark展宽计算径向上电子密度的分布。结果表明:Ar/H2气体中,H2在焰流中心区域(0~30 mm)分布较为均匀,但在焰流中心稍靠外的区域(30~60 mm)随着径向距离的增加而增加;加入He后,Ar和H2在焰流中心处浓度较低并在一定范围内随着径向距离的增加而增加,He往焰流中心聚集;不同气体组分的电子温度和电子密度随着径向距离的增加而降低,同时受到H2和He的影响。  相似文献   

5.
屏蔽气体对氩等离子体冲击射流的影响   总被引:1,自引:0,他引:1  
在空气环境中利用氩等离子体射流进行材料加工时,环境空气卷吸进入射流可能会引起金属材料氧化。采用同轴屏蔽气体保护是减小该不利影响的一种可行方案。为此本文对空气环境中层流氩等离子体冲击射流特性受屏蔽气体影响问题进行了数值模拟研究,重点考察了屏蔽气体速度等对材料加工区氧含量的影响。  相似文献   

6.
激波冲击R22重气柱所导致的射流与混合研究   总被引:3,自引:0,他引:3       下载免费PDF全文
沙莎  陈志华  薛大文 《物理学报》2013,62(14):144701-144701
基于大涡模拟, 结合五阶加权基本无振荡格式与沉浸边界法对激波自左向右与R22重气柱作用过程进行了数值模拟. 数值结果清晰地显示了激波诱导Richtmyer-Meshkov不稳定性所导致的重气柱变形过程, 并与Haas 和 Sturtevant 的实验结果符合. 另外, 结果还揭示了入射激波在气柱内右侧边界发生聚焦并诱导射流的过程, 以及在Kelvin-Helmhotz 次不稳定性作用下两个主涡滑移层形成次级涡的过程, 并分析了气柱变形过程中与周围空气的混合机理. 最后, 通过改变反射距离对反射激波与不同变形阶段的气柱的再次作用过程进行了研究. 结果表明: 当激波反射距离较长时, 反射激波与充分变形后的气柱作用, 使其在流向方向上进一步被压缩; 而当激波反射距离较短时, 反射激波会在气柱内发生马赫反射, 两个三波点附近产生两个高压区, 当其传播至气柱左侧边界时对气柱边界造成冲击加速, 诱导两道向左传播的反向射流. 关键词: Richtmyer-Meshkov不稳定性 R22重气柱 反射激波 射流  相似文献   

7.
 数值研究了平面激波冲击氮气环境中SF6气泡界面的Richtmyer-Meshkov不稳定性,重点关注其中的激波聚焦及射流的产生和发展过程。在入射激波马赫数为1.23的情况下,给出了压力、密度、数值纹影和涡量等物理量的演化图像,定量分析了流场中压力最大值、密度最大值、射流速度、环量和斜压力矩随时间的变化关系。计算结果表明,平面激波冲击SF6气泡过程有很强的聚能效应,在气泡内部靠近下游极点处发生激波近似理想聚焦和点爆炸现象,直接导致出现二次波系以及向下游运动的细长射流结构。相比入射激波,二次波系产生斜压力矩和涡量的能力要弱得多。  相似文献   

8.
加载波前沿宽度对铝表面微射流的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
王裴  邵建立  秦承森 《物理学报》2009,58(2):1064-1070
利用光滑粒子流体动力学方法,计算了金属表面沟槽在冲击下的微射流现象,详细讨论了微射流对加载波前沿宽度的依赖性. 计算结果表明:随加载波前沿宽度增加, 射流质量和头部速度都减小,同时低速喷射物所占比例增大. 对结果分析得出,微射流由沟槽斜面粒子在冲击加卸载后获得轴向速度,并在对称轴附近碰撞形成;射流体由沟槽斜面的金属薄层构成;当加载波前沿变宽,形成射流的金属层变小,这是由于沟槽斜面粒子的碰撞速度降低,碰撞角度增大,部分粒子碰撞时不满足射流强度封锁条件,而不再形成射流. 关键词: 微射流 光滑粒子方法 加载波前沿  相似文献   

9.
磁性液体对射流冲击传热的强化   总被引:1,自引:0,他引:1  
本文对磁液应用于射流冲击传热的影响进行了实验研究。采用变压器油和煤油基磁液CI-20B作为工质,把 13×5 mm的康铜金属膜作为加热面和传热面,进行自由表面液体窄缝射流冲击,使用的喷嘴窄缝宽度为 250微米,射流速度变化范围 5.7 m/s~8.5 m/s。分别对附加磁液前后的射流传热实验结果进行比较,表明磁液的使用对射流冲击传热具有一定的强化。  相似文献   

10.
《工程热物理学报》2021,42(7):1864-1868
以Li-SF_6反应射流为能量来源的闭式循环动力系统在水下推进以及航空航天等领域具有广阔的应用前景。本文在欧拉模型和组分输运模型的基础上,结合涡耗散反应速率模型和Lee相变模型对Li-SF_6反应射流过程进行了三维稳态计算,研究了相变常数对反应射流流场以及气羽结构的影响。研究结果表明,反应射流气羽穿透长度随蒸发常数的增加而增加,随凝结常数的增加而减小;在蒸发常数为10~4以及凝结常数为10~6下,气液界面与饱和温度分布一致,模拟计算结果与实验结果符合较好。本文研究结果将为Li-SF_6反应射流的数值模拟奠定基础,也将对Li-SF_6射流反应器的设计和安全运行提供指导。  相似文献   

11.
爆炸荷载作用下建筑构件的动态响应与损伤破坏的试验研究对于结构抗爆设计具有重要的参考价值。为了探究激波管参数对末端荷载峰值和持时的影响,首先,基于商用有限元分析软件ANSYS/LS-DYNA开展了典型激波管试验的数值模拟,通过对比膨胀段末端反射超压和测试构件的挠度时程,验证了激波管有限元模型、参数取值和数值分析方法的准确性;然后,设计了末端尺寸为3 m×3 m的激波管,开展了激波管几何参数和驱动段超压对末端反射超压的参数影响分析,结果表明:超压峰值和持时随驱动段长度、直径和超压的增大而增加,随膨胀段角度减小而增加;最后,给出了基于反射超压峰值和持时的激波管设计方法,并通过设计算例进行了验证。  相似文献   

12.
本文分析了激波影响下,不同激波强度,冷却气体和注入率对发汗冷却效果的影响。马赫数3的超音速主流遇到流道内的楔形激波发生器产生斜激波入射到多孔平板表面。楔块楔角φ分别为0°、4°、8°、12°模拟不同的入射激波强度,冷却介质分别为空气、甲烷与氢气。计算结果表明,激波使多孔区域出口表面静压上升,冷却流体流出受阻而破坏冷却效果,且冷却效率随激波强度增强而下降,随冷却气体分子量增大,冷却效率下降幅度减小;但在激波强度较强时,激波在多孔表面形成逆压梯度,迫使冷却流体流向入射点上游区域而使该区域冷却效果得到恢复。提高冷却剂注入率可以减弱激波对冷却效率的破坏作用,但使壁面温度不均匀性增加。  相似文献   

13.
非定常激波对气膜冷却影响的数值模拟   总被引:4,自引:0,他引:4  
利用数值计算的方法研究了非定常激波对下游涡轮叶片表面气膜冷却的影响.冷却气流在激波和尾迹经过的过程中,发生了上扬和重新被压制回壁面的现象.考察了壁面上特定点在有气膜和无气膜情况下的换热量.通过计算发现,有气膜时的换热量有不同程度的下降,而且换热量随时间变化的趋势也发生了很大的变化.气膜的覆盖减小了主流场对壁面换热量的影响.  相似文献   

14.
应用PDF方法对甲烷射流火焰组分浓度分布的数值研究   总被引:3,自引:0,他引:3  
本文用k-ε模型和PDF方程相结合的方法对甲烷湍流射流扩散火焰进行了求解,发现Peters等提出的四步反应模型在径向分布预示性能不好,本文对甲烷射流扩散火焰的实际工况进行了分析,提出反应模型的改进方案。改进后的模型所给出的组分浓度分布比原四步反应模型更符合实验结果。验证了修正模型所依据的思想.  相似文献   

15.
通过实验研究出口雷诺数对平面湍流射流自保持性的影响. 测量的射流来自相同的喷嘴但不同的雷诺数Re(≡Ujh/ν,其中Uj是出口平均速度、h是窄缝出口的厚度和ν是黏性系数),其变化范围是Re=4582—57735.所得的数据包括沿轴线的平均速度、湍流强度、积分尺度、高阶矩和能谱. 实验发现,随着Re的增大,平面射流发展减慢,平均速度和湍流强 关键词: 平面射流 雷诺数 自保持性  相似文献   

16.
王裴  邵建立  秦承森 《物理学报》2012,61(23):321-327
基于光滑粒子流体动力学方法,数值模拟了冲击加载下不同金属表面沟槽微射流现象,重点分析了微射流头部速度及其分布随沟槽角度的变化规律.研究结果发现,喷射系数在沟槽半角为45°附近达到最大,随着角度的增加或减小喷射系数均较小;而最大喷射速度随沟槽角度的增加近似成线性减小变化.详细分析了不同角度沟槽诱发微射流的物质来源变化及其经历的动力学过程,发现随着沟槽夹角增加,射流物质来源由沟槽两侧逐步向沟槽底部过渡,当沟槽半角在45°附近,形成射流的物质在沟槽底部和两侧近似均匀分布.  相似文献   

17.
强激光照射金属线圈后,会在打靶点附近的背景等离子体中诱发冷电子的回流,在金属丝内形成强电流源,从而产生强磁场.本文利用神光II高功率激光器产生的强激光照射金属丝靶,产生了围绕金属丝的环形强磁场.利用B-dot对局域磁感应强度进行了测量,根据测量结果,结合三维模拟程序,反演得到磁场的空间分布.再利用强激光与CH平面靶相互作用产生的超音速等离子体撞击该金属丝,产生了弓激波.通过光学成像手段研究了磁场对冲击波的影响,发现磁场使得弓激波的轮廓变得不明显并且张角变大.同时,通过实验室天体物理定标率,将金属丝表面等离子参数变换到相应的天体参数中,结果证明利用该实验方法可以在实验室中产生类似太阳风的磁化等离子体.  相似文献   

18.
边界条件对径向湍流射流的影响的计算研究   总被引:3,自引:1,他引:2  
本文对径向湍流自由射流作了计算,研究了边界条件的不同取法对计算结果的影响,与文献发表的计算结果和实验结果作了比较,再次证明上游湍流结构的边界条件对射流的渐近扩张速率及雷诺应力等流场参数有明显的影响.  相似文献   

19.
通过全消声室实验研究了不同冲击距离(L)下亚声速射流宽频噪声特性。利用远场传声器获得L=30D~2D (D为喷口直径)的噪声数据,并详细分析了频谱特性。试验结果表明,减小冲击距离:(1)上游所有频段的噪声都明显上升,极角α=120°总声压级(OASPL)在L <10D时增加了10~17 dB;(2)下游α=30°的噪声能量向低频转移,且频谱在L <10D时变化不明显;(3)偏流板产生噪声的中、高频段对边线影响较小, α=90°的频谱迅速衰减,在L <10D时形成陡峭的峰值。研究证实在噪声最强的方向(α=120°),随冲击距离的减小偏流板贡献的噪声功率占比呈线性增加。冲击距离小于势流核时,偏流板贡献大部分噪声能量, L=7D~5D时占比超过80%。另外射流冲击产生的噪声指向性明显,冲击噪声和后缘分离噪声在不同方向取得主导地位,相应频谱分别在上游和下游呈现高频主导和低频占优的特性。  相似文献   

20.
杜诚  徐敏义  米建春 《物理学报》2010,59(9):6331-6338
本文研究雷诺数(Re)对圆形渐缩喷嘴湍流射流的影响.实验在射流出口雷诺数为 Re = 4050—20100 的范围内进行,分别测量了射流出口、中心线的平均及湍流流场以及部分径向剖面速度分布.所有测量均采用单热线恒温热线风速仪进行高频采样,所测流场范围在轴向上为 0—30d(这里d为射流出口直径).虽然出口速度分布均为"平顶帽"形,但测量结果依然反映出Re对射流出口以及下游流场有强烈的影响.当Re小于临界值(~10000)时 关键词: 雷诺数 圆形射流 热线风速仪  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号