共查询到20条相似文献,搜索用时 0 毫秒
1.
量子点材料兼具极高的色纯度、发光颜色可调以及的荧光量子产率高等特点,已成为显示领域中的明星材料,在提升显示器件的色域方面具有巨大潜力。基于量子点材料的液晶显示背光技术是目前量子点材料在显示器件中的主流应用方向,引起了学术界和工业界的广泛关注。本文将综述量子点液晶显示背光技术的研究进展,主要包括量子点材料的选择、背光结构的应用以及材料复合与封装技术的发展现状,重点介绍了目前产业界广泛关注的量子点光学膜技术,特别是国内自主知识产权的低成本钙钛矿量子点光学膜技术,由于其具备广色域(124%NTSC)、易加工、低成本等特点,已成为具有成长潜力的技术路线。 相似文献
2.
3.
量子点材料因具有发光波长可调,色度纯,量子效率高等优异特性而受到广泛关注,在光致发光高色彩显示方面有着巨大的应用潜力。本文综述了量子点背光技术的研究进展,主要对比了QDs On-Chip、QDs On-Surface及QDs On-Edge 3种量子点背光主流技术的基本原理及结构,并分析了它们在液晶显示领域的应用,未来前景及面临的挑战;然后介绍了几种新型的量子点背光技术,并对两种量子点背光新技术进行重点说明:一种是采用低温注塑成型工艺将量子点与高分子材料均匀混合为一体,用于制备直下式背光的量子点体散射型结构扩散板;另一种新技术是采用丝网印刷或喷墨打印工艺将量子点转印至导光板表面,形成应用于侧入式背光的量子点网点微结构导光板。这两种背光都具有制备工艺简单、成本低、生产效率高等特点,对高色域液晶显示的研究及发展意义深远。 相似文献
4.
5.
半导体量子点激光器研究进展 总被引:11,自引:0,他引:11
首先简要地回顾了半导体激光器发展的历史和量子点激光器所特有的优异性能,进而介绍半导体量子点及其三维量子点阵列的制备技术,然后分别讨论了量子点激光器(能带)结构设计思想,实现基态激射时所必须具备的条件和近年来国内外半导体量子点器的研究进展。最后分析讨论了量子点激光器研制中存在的问题和发展趋势。 相似文献
6.
7.
采用溶胶凝胶方法和水热法制备了水溶性荧光氧化锌量子点(Zn O-QDs)和碳量子点(C-QDs),其量子效率分别达到38%和61%。基于所合成的Zn O-QDs和C-QDs制备了氧化锌和碳量子点复合物(Zn O/CQDs),并分别对其发光特性进行了研究。透射电镜(TEM)图像表明,所合成的Zn O-QDs和碳量子点尺寸分布在3~6 nm之间,分散均匀。光致发光光谱表明,Zn O-QDs和碳量子点的发光峰中心分别位于540 nm和450 nm,两者发光峰的最佳激发波长为370 nm和350 nm。通过调整Zn O-QDs和C-QDs的体积比,所制备的Zn O/C-QDs能够实现荧光光谱的连续可调,并产生了白色荧光。 相似文献
8.
量子点太阳电池现已成为极具潜力的“第三代” 光伏器件, 其优点体现在材料成本低廉, 制备工艺简便, 以及其敏化剂特有的多激子效应(MEG) 潜能和吸光范围可方便调节等方面. 但是与染料分子敏化剂相比, 量子点敏化剂粒径更大、表面缺乏具有与TiO2结合的官能团, 这导致其在TiO2介孔中渗透阻力大、难以在TiO2表面吸附沉积, 所以量子点沉积手段在电池组装过程中尤为重要. 本文综述了电池组装过程中量子点的沉积方法, 分类阐述了直接生长量子点方法: 化学浴沉积(CBD)和连续离子层吸附生长(SILAR), 以及采用预先合成量子点的沉积方法: 连接分子辅助法(LA)、直接吸附法(DA)和电泳沉积(EPD)方法, 陈述了各沉积方法的发展过程及相应电池性能的改善, 对比了这些沉积方法的优缺点. 突出介绍了预先合成量子点的沉积方法, 特别是近年来不断优化而凸显优势的连接分子辅助法(LA). 总结了此方法快速、均匀沉积以及实现器件高性能的特点, 介绍了此方法沉积表面缺陷更少、结构更完善、材料更“绿色化”的量子点敏化剂的最新研究成果. 相似文献
9.
量子点作为一种理想的发光材料,一直以来引起了科学家和工业界的广泛关注,推动了生物成像、照明、显示等领域的发展。随着生态环境保护的意识逐渐增强,磷化铟量子点(InP QDs)作为镉基量子点的最好替代者之一,受到了广泛的关注:一方面,InP QDs具有与镉基量子点相媲美的发光和光电性质;另一方面,其发光光谱范围可覆盖整个可见光区,且合成工艺与镉基量子点共通。然而,因为InP QDs与传统镉基量子点相比,在元素价态、核壳晶格匹配性、反应动力学过程等方面具有特殊性,其合成化学的发展还不成熟,限制了其光电应用的研究进程。本文结合量子点显示的发展现状和未来需求,针对InP QDs体系进行了综述,通过分析其研究现状,分析其发展问题和挑战,并对其进行了展望,期望为量子点及其电致发光器件的进一步探索研究提供一些启示和帮助,推动无镉、低毒、高色纯度量子点体系的发展。 相似文献
10.
量子线,量子点和它们的激光器 总被引:2,自引:0,他引:2
介绍了半导体量子线、量子点的自组织生长法和掩膜表面选择局部生长法,讨论了量子线、量子点激光器的优点以及遇到的问题,指出了大小均匀性是实现量子线、量子点激光器的主要障碍. 相似文献
11.
12.
13.
14.
亥姆霍兹-科尔劳施效应(简称H-K效应)指的是人眼对色光的感知亮度随着色纯度的增加而提升的现象。量子点背光技术可显著提升液晶显示的色域和视觉感知亮度,已经在众多显示产品中开始应用。本论文通过观看者亮度感知实验,对比了YAG荧光粉白光LED背光电视(YAG电视)和量子点背光电视(量子点电视)的H-K效应差异,根据Kaiser模型与Nayatani模型分析纯色实验的测试结果,并通过彩色实验探究了显示器的色域对感知亮度与主观偏好的影响。实验结果表明:量子点电视具有更为显著的H-K效应,视觉感知亮度明显高于传统YAG电视;在同样的感知亮度下,量子点电视的纯色R、G的物理亮度仅为YAG电视的75%、86%;鲜艳彩色画面的物理亮度为YAG电视的74%~88%;在相同感知亮度下,高色域的量子点电视更受欢迎,并且喜好趋势将随着亮度的增加而增加。上述结果对于健康显示的发展具有重要指导意义。 相似文献
15.
在ITO玻璃上制备了ITO/poly(3,4-ethylene dioxythiophene)∶poly(styrene sulphonate)(PEDOT∶PASS)/poly(N,N-bis(4-butylphenyl)-N,N-bis(phenyl)benzidine(poly-TPD)/QD/1,3,5-Tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl(TPBi)/Li F/Al结构的量子点发光二极管(QD-LED)。通过优化量子点的浓度,发现浓度为30 mg/m L时的器件性能最优,最大外量子效率(EQE)为0.83%,最大发光亮度为4 076 cd/m2。为了进一步提高QD-LED的发光效率,将QD掺入聚合物poly(N-vinylcarbazole)(PVK)和1,3-Bis(5-(4-(tert-butyl)phenyl)-1,3,4-oxadiazol-2-yl)benzene(OXD-7)中,以使得注入的电子和空穴更加平衡,同时还有助于能量传递,降低QD团聚及修饰QD薄膜表面,减少激子猝灭效应等。为此,通过旋涂和蒸镀两步法制备ITO/PEDOT∶PASS/poly-TPD/(PVK∶OXD-7)∶QD/TPBi/Li F/Al结构的器件,改变(PVK∶OXD-7)∶QD比例(1∶1,1∶3,1∶5,0∶1),发现(PVK∶OXD-7)∶QD为1∶3时的QD-LED具有最优性能,最大EQE为1.97%,相当于非掺杂器件的2.3倍,并且发光峰没有发生偏移。 相似文献
16.
垂直结构多色量子点LED(QD-LED)最新进展 总被引:1,自引:0,他引:1
量子点LED以胶体量子点为发光层,通过调节作为发光层量子点的尺寸可以制作出覆盖可见(380-780nm)以及近红外光谱的量子点LED(QD-LED),而且量子点LED器件发出的光谱范围很窄,其光谱半高宽可达30nm。简述了当今国内外关于QD-LED器件结构的研究成果以及器件的制作工艺,介绍了目前课题组最新的一些相关成果。重点阐述了目前已经得到验证的几种量子点器件结构,分析了其存在的优缺点,这些结论对进一步改进QD-LED的结构以及使其可以更有利于商业化提供了参考。 相似文献
17.
18.
19.
量子点具有色纯度高、发光颜色可调和荧光量子产率高等诸多优良的光电特性,已成为一类非常重要的发光材料,在显示及照明领域都受到了广泛的关注.目前,量子点材料的显示应用主要是基于其光致发光特性,或者说色转换特性,用于提升液晶面板的显示色域、或者与蓝光主动发光器件搭配实现全彩显示.本文首先综述常规量子点(CdSe、InP)在液... 相似文献
20.
用低压金属有机化学气相外延(LP-MOCVD)技术,以Stranski Krastanow(S-K)模式,在GaAs衬底上生长了CdSe和ZnCdSe量子点(QDs)。用原子力显微镜(AFM),观测到了外延层低于临界厚度时,CdSe自组装量子点的形成过程,并把其机理归结为表面扩散效应和应变弛豫效应的联合作用。依据理论计算外延层临界厚度值的指导,用LP-MOCVD技术在GaAs衬底上生长了ZnCdSe量子点,详细观测了ZnCdSe量子点的形成和演变,这些过程可用Ostwald熟化过程和形成过程的联合作用来解释。用LP-MOCVD技术,以Volmer Weber(V-W)模式,在GaAs衬底上生长了ZnSeS量子点,随着生长时间的增加,量子点尺寸增大,而量子点密度减少,这些现象可用表面自由能来解释。 相似文献