首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
用TRP技术研究了以全硅MCM-41(Si-MCM-41)和HNO3交换的全硅MCM-41(H-MCM-41)为载体制备的Ni-Mo、Co-Mo和Ni-W加氢脱硫(HDS)催化剂的还原性能,并以0.8(wt)%二苯并噻吩(DBT)的十氢萘溶液为模型化合物,在高压固定床反应器上考察了上述催化剂的加氢脱硫(HDS)反应性能。结果表明,Si-MCM-41经稀HNO3交换后,所担载的Ni-Mo和Ni-W催化剂还原性能、HDS活性和加氢活性有显著变化,但对Co-Mo催化剂影响不大。这说明在Ni-Mo/H-MCM-41和Ni-W/H-MCM-41中可能存在氢溢流现象,DBT的HDS活性与载体表面酸性和氢溢流有关。  相似文献   

2.
在固定床高压微反装置上,考察了预硫化型NiMoS/γ-Al2O3催化剂上二苯并噻吩(DBT)加氢脱硫(HDS)反应和喹啉加氢脱氮(HDN)反应之间的相互影响.结果表明,喹啉对DBT的HDS反应具有强烈的抑制作用,其中对加氢路径比氢解路径的抑制作用更强,这是由喹啉及其HDN反应的中间产物与DBT在活性位上的竞争吸附造成的.在300和340℃时,喹啉对DBT的HDS反应中氢解路径的抑制程度与其HDN中间产物的相对含量紧密相关.而DBT能够提高喹啉的脱氮能力,这源于其HDS产物H2S.H2S促进了催化剂表面硫阴离子空穴向B酸位的转化,从而提高了喹啉HDN中间产物分子的C(sp3)-N键的断裂能力.HDN活性相的保持不需要过多的硫原子.  相似文献   

3.
 分别以γ-Al2O3、无定形硅铝和含少量稀土分子筛的γ-Al2O3为载体,制备了不同系列的NiW体系加氢脱硫催化剂,并在连续流动微反装置上评价了催化剂对4,6-二甲基二苯并噻吩(DMDBT)加氢脱硫反应的催化性能.结果表明,NiW体系催化剂对该反应具有较高的芳烃加氢和脱硫活性;先加氢后脱硫是加氢脱硫(HDS)反应的主要途径,提高加氢活性是提高HDS活性最有效的途径;增强载体的酸性,直接脱硫和裂解活性均有所提高.同时,酸性载体负载的催化剂还显示出一定的异构化性能,但其加氢活性低于氧化铝负载的催化剂.酸性载体负载的NiW催化剂的异构化性能在邻二甲苯异构化反应中得到进一步证实.根据实验结果,讨论了NiW体系催化剂上DMDBT转化反应的不同途径.  相似文献   

4.
在固定床高压微反装置上考察了预硫化型NiMoS/γ-Al2O3催化剂上二苯并噻吩(DBT)加氢脱硫(HDS)反应和吲哚加氢脱氮(HDN)反应之间的相互影响。结果表明,吲哚对DBT的加氢脱硫反应具有抑制作用,其中对加氢路径(HYD)比对氢解路径(DDS)的抑制作用强,温度升高后,吲哚的抑制作用减弱。吲哚对DBT加氢脱硫反应的抑制作用源于吲哚及其HDN反应的中间产物在活性位上的竞争吸附。DBT和原位生成的H2S促进了催化剂表面硫阴离子空穴(CUS)向B酸位的转化,从而提高1,2-二氢吲哚(HIN)分子中C(sp3)—N键的断裂能力,使得吲哚的转化率和产物中邻乙基苯胺(OEA)的相对含量增大。HDN活性相的形成虽然需要硫原子的参与,但是活性相的保持并不需要大量的硫原子,较高含量硫化物存在时加氢活性位减少,不利于脱氮反应。  相似文献   

5.
研究了二苯并噻吩(DBT)、4-甲基二苯并噻吩(4-MDBT)和4,6-二甲基二苯并噻吩(4,6-DMDBT)在非负载型NiMoW催化剂上的加氢脱硫反应产物分布及反应机理,给出了它们在非负载型催化剂上加氢脱硫反应网络.研究发现,由于甲基的空间位阻效应,二苯并噻吩类化合物加氢脱硫转化率顺序为4,6-DMDBT≈4-MDBT<DBT,而非负载型NiMoW催化剂具有很高的芳环加氢活性,有利于烷基取代的芳环加氢,减弱空间位阻效应,使烷基取代的二苯并噻吩类化合物得到有效脱除.DBT的脱硫产物会被进一步加氢,其产物分布与联苯加氢产物相似.4-MDBT有两种预加氢脱硫反应路径,甲基取代的苯环由于甲基的供电子效应会被优先加氢.非负载型催化剂存在的L酸中心会使部分4-MDBT和4,6-DMDBT通过脱甲基反应生成DBT再进行脱硫反应.  相似文献   

6.
分子筛在加氢脱硫催化剂深度脱硫方面的应用   总被引:1,自引:0,他引:1  
本文综述了分子筛对加氢脱硫催化剂深度脱硫性能的影响,对分子筛基加氢脱硫催化剂上涉及含硫大分子4,6-二甲基二苯并噻吩(4,6-DMDBT)加氢脱硫反应的研究进展作了总结。主要介绍了微孔分子筛、介孔分子筛、微介孔复合分子筛和纳米分子筛在加氢脱硫催化剂针对4,6-DMDBT加氢脱硫反应方面的应用进展。简要介绍了分子筛基加氢脱硫催化剂上4,6-DMDBT加氢脱硫反应的反应途径、反应机理及抑制过度裂化反应的措施。最后展望了该研究领域的发展前景。  相似文献   

7.
钛硅(TS-1)分子筛的微孔孔道严重限制了其在复杂分子催化转化中的应用,为了克服这一问题,通过酸洗脱、碱刻蚀及二者相结合的方法制备了多级孔TS-1分子筛,并采用等体积共浸渍法制备了相应的NiMo负载型催化剂;使用X射线衍射(XRD)、N2吸附-脱附、吡啶吸附红外光谱(Py-FTIR)、氢气程序升温还原(H2-TPR)、X射线光电子能谱(XPS)和高分辨透射电子显微镜(HR-TEM)等方法对多级孔TS-1分子筛的理化性质进行了表征;以二苯并噻吩(DBT)为探针对催化剂的加氢脱硫(HDS)性能进行了评价。结果表明,和常规TS-1分子筛相比,多级孔TS-1分子筛保持了MFI拓扑结构,比表面积增大且具有介孔结构,分子筛表面形成了适量的Brønsted酸中心;相应催化剂上活性金属与载体间相互作用得以改善,MoS2片晶长度和堆垛层数适宜,形成了更多的NiMoS活性相;催化剂活性和选择性均有所提升,尤其是酸洗脱获得的NiMo/AT-TS-1催化剂的活性相较未经处理的NiMo/TS-1催化剂提升了1.2倍,直接脱硫(DDS)路径选择性提升了22%。  相似文献   

8.
钛硅(TS-1)分子筛的微孔孔道严重限制了其在复杂分子催化转化中的应用,为了克服这一问题,通过酸洗脱、碱刻蚀及二者相结合的方法制备了多级孔 TS-1 分子筛,并采用等体积共浸渍法制备了相应的 NiMo 负载型催化剂;使用 X 射线衍射(XRD)、N2吸附-脱附、吡啶吸附红外光谱(Py-FTIR)、氢气程序升温还原(H2-TPR)、X射线光电子能谱(XPS)和高分辨透射电子显微镜(HR-TEM)等方法对多级孔TS-1分子筛的理化性质进行了表征;以二苯并噻吩(DBT)为探针对催化剂的加氢脱硫(HDS)性能进行了评价。结果表明,和常规TS-1分子筛相比,多级孔TS-1分子筛保持了MFI拓扑结构,比表面积增大且具有介孔结构,分子筛表面形成了适量的Brønsted酸中心;相应催化剂上活性金属与载体间相互作用得以改善,MoS2片晶长度和堆垛层数适宜,形成了更多的 NiMoS活性相;催化剂活性和选择性均有所提升,尤其是酸洗脱获得的 NiMo/AT-TS-1催化剂的活性相较未经处理的NiMo/TS-1催化剂提升了1.2倍,直接脱硫(DDS)路径选择性提升了22%。  相似文献   

9.
在固定床高压微反装置上考察了预硫化型NiMoS/γ-Al2O3催化剂上二苯并噻吩(DBT)加氢脱硫(HDS)反应和吲哚加氢脱氮(HDN)反应之间的相互影响。结果表明,吲哚对DBT的加氢脱硫反应具有抑制作用,其中对加氢路径(HYD)比对氢解路径(DDS)的抑制作用强,温度升高后,吲哚的抑制作用减弱。吲哚对DBT加氢脱硫反应的抑制作用源于吲哚及其HDN反应的中间产物在活性位上的竞争吸附。DBT和原位生成的H2S促进了催化剂表面硫阴离子空穴(CUS)向B酸位的转化,从而提高1,2-二氢吲哚(HIN)分子中C(sp3)—N键的断裂能力,使得吲哚的转化率和产物中邻乙基苯胺(OEA)的相对含量增大。HDN活性相的形成虽然需要硫原子的参与,但是活性相的保持并不需要大量的硫原子,较高含量硫化物存在时加氢活性位减少,不利于脱氮反应。  相似文献   

10.
以硝酸镍为镍源, 磷酸氢二铵为磷源, 介孔分子筛SBA-15为载体, 用共浸渍法制备了含磷化镍前驱体的样品, 然后在氢气流中采用程序升温还原法, 制备了Ni2P质量分数为5%-40%的Ni2P/SBA-15催化剂. 用X射线衍射(XRD)、N2吸附脱附、透射电子显微镜(TEM)、傅立叶变换红外光谱(FTIR)等分析测试技术对催化剂的结构进行了表征, 以噻吩和二苯并噻吩(DBT)为模型化合物, 在微型固定床反应器上对催化剂的加氢脱硫(HDS)性能进行了评价. 结果表明, Ni2P/SBA-15催化剂中SBA-15 的介孔结构依然存在, 活性组分Ni2P具有良好的分散性, 但随Ni2P含量的增加, 催化剂的比表面积、孔容和孔径均有明显减小. 当反应温度为320 ℃时, Ni2P含量为15%-25%(w)的催化剂就具有很好的加氢脱硫催化性能; 反应温度在360 ℃以上时, 所有催化剂都具有优异的深度脱硫催化性能. Ni2P/SBA-15催化剂对二苯并噻吩的加氢脱硫(HDS)主要以直接脱硫机理(DDS)进行.  相似文献   

11.
MCM-41-HY复合分子筛的合成及其在深度加氢脱硫中的应用   总被引:5,自引:0,他引:5  
在水热条件下合成了包覆型MCM-41-HY复合分子筛.采用XRD、N2气吸附和SEM等方法对其进行了表征.结果表明,MCM-41-HY复合分子筛和MCM-41与H型Y沸石(HY)的机械混合物明显不同,在复合分子筛MCM-41-HY中,中孔相MCM-41附晶生长在HY沸石上,将HY包覆起来.以二苯并噻吩为模型化合物,考察了该材料担载NiMo催化剂的加氢脱硫活性.结果表明,MCM-41-HY复合分子筛与MCM-41和HY的机械混合物担载NiMo催化剂的加氢脱硫(HDS)活性相当,但MCM-41-HY复合分子筛担载NiMo催化剂的裂化活性较低.其裂化活性不同的原因在于其载体孔道结构和酸性位的分布不同.  相似文献   

12.
通过微波加热的方法,分别合成了硅/铝比(30、40、50、55、60)不同的含磷铝结构单元的AlMCM-41复合分子筛,并以此为载体采用共浸渍和程序升温高纯氢气还原的方法制备了负载量为30%(以WO3计)的磷化钨催化剂。采用X射线衍射(XRD)、BET比表面积测定、扫描电镜(SEM)及X光电子能谱(XPS)等手段对催化剂进行了表征。通过高压微反装置对催化剂的二苯并噻吩(DBT)加氢脱硫(HDS)性能进行了评价。结果表明,在催化剂表面检测到活性组分WP和以类似-Al-O-W-P结构形式存在的具有一定活性的物种。WP是主要的活性相,硅/铝比对WP活性相在催化剂表面所占的比例有一定影响。不同硅/铝比的催化剂表现出不同的选择性加氢性能,但直接加氢脱硫是催化剂DBT HDS的主要路径。其中,硅铝比为55的催化剂具有相对最高的DBT HDS的转化率(93.1%),且其直接加氢脱硫产物(联苯)的选择性相对最高(82.7%),这对减少氢耗,保护环境有利。  相似文献   

13.
孙厚祥  张化冰 《分子催化》2020,34(5):446-453
直接在AlPO4-5凝胶中加入Si和Sn2+源成功制备SAPO-5和SnSAPO-5分子筛。采用XRD、低温N2物理吸附、SEM、NMR、Py-IR、NH3-TPD等表征对分子筛物理化学性质进行分析。随Sn含量的增多,杂原子SnSAPO-5分子筛表面更光滑,外貌呈现更规则的六棱柱;Sn和Si更多的富集于表面;并且Sn2+同晶取代Al3+,骨架产生缺陷,电荷不平衡,进而产生更多的酸性位点。将分子筛用于NiW催化剂的改性,以脱除模拟油中二苯并噻吩(DBT)为探针,评价其改性加氢催化剂的加氢脱硫(HDS)反应性能。SnSAPO-5分子筛的添加在催化剂上引入了更多的酸性中心;改善载体与活性金属的相互作用;促进活性金属的硫化;形成更多的金属活性相,进而提高NiW催化剂的加氢脱硫能力。因而SnSAPO-5改性催化剂表现出比其他改性催化剂更好的HDS活性,具有良好的应用前景。  相似文献   

14.
Ni2P/SBA-15催化剂的结构及加氢脱硫性能   总被引:7,自引:1,他引:6  
以硝酸镍为镍源,磷酸氢二铵为磷源,介孔分子筛SBA-15为载体,用共浸渍法制备了含磷化镍前驱体的样品,然后在氢气流中采用程序升温还原法,制备了Ni2P质量分数为5%-40%的Ni2P/SBA-15催化剂.用X射线衍射(XRD)、N2吸附脱附、透射电子显微镜(TEM)、傅立叶变换红外光谱(FTIR)等分析测试技术对催化剂的结构进行了表征,以噻吩和二苯并噻吩(DBT)为模型化合物,在微型同定床反应器上对催化剂的加氧脱硫(HDS)性能进行了评价.结果表明,Ni2P/SBA-15催化剂中SBA-15的介孔结构依然存在,活性组分Ni2P具有良好的分散性,但随Ni2P含量的增加,催化剂的比表面积、孔容和孔径均有明显减小.当反应温度为320℃时,Ni2P含量为15%-25%(w)的催化剂就具有很好的加氢脱硫催化性能;反应温度在360℃以上时,所有催化剂都具有优异的深度脱硫催化性能.Ni2P/SBA-15催化剂对二苯并噻吩的加氢脱硫(HDS)主要以直接脱硫机理(DDS)进行.  相似文献   

15.
本工作将三种材料:全硅MCM-41 (Si-MCM-41)、通过机械混合Si-MCM-41和HZSM-5得到的Z-MCM-41-M、通过在HZSM-5外部包覆Si-MCM-41制备得到的Z-MCM-41,采用XRD、N2吸附-脱附、NH3-TPD、Py-IR手段进行了表征.分别以这些材料为载体,制备出负载型贵金属Pd催化剂,以二苯并噻吩(DBT)为模型化合物,在固定床反应器上进行加氢脱硫(HDS)性能考察.反应结果表明,载体的表面积或分散程度并不是影响负载型Pd催化剂HDS性能的关键性因素,催化剂的HDS性能受到载体的孔尺寸和载体的酸性双重影响.负载在酸性载体上表现出较好的HDS性能和加氢选择性,与溢流氢有关.其中,在三种催化剂中,Pd/Z-MCM-41催化剂表现出最高的HDS活性和优异的加氢活性,说明在载体的介孔孔道结构中引入微孔的酸中心对提高加氢脱硫活性有重要影响,仅靠机械混合方式制备的载体不能将介孔的孔道优势与微孔的酸性优势表现出来,不能产生较好的协同催化作用,具有介孔孔道结构和适中酸性的Z-MCM-41复合材料是潜在的贵金属加氢脱硫催化剂载体.  相似文献   

16.
以MCM-41为载体, 采用程序升温还原法制备了含有少量Pt的Ni-P/MCM-41催化剂, 并用氢气程序升温还原(H2-TPR)、 X射线衍射(XRD)、 N2吸附比表面积、 X射线光电子能谱(XPS)和透射电子显微镜(TEM)对催化剂的结构和性能进行了表征. 考察了P/Ni摩尔比及Pt含量对Ni-P/MCM-41催化剂催化二苯并噻吩(DBT)加氢脱硫(HDS)性能的影响. 结果表明, Pt能降低Ni2P催化剂的还原温度, 并有助于Ni2P相的生成, 抑制团聚现象, 提高催化剂的HDS活性. 当Pt的质量分数为0.6%, P/Ni摩尔比为2时, 催化剂具有最佳加氢脱硫活性, 在340 ℃, 3.0 MPa, 氢油体积比为500, 质量空速(WHSV)为2.0 h-1的条件下, 二苯并噻吩转化率为100%, 且催化剂加氢脱硫活性在120 h内基本保持稳定.  相似文献   

17.
采用偏钨酸铵{(NH4)2W4O13·18H2O}与磷酸氢二铵{(NH4)2HPO4}溶解、蒸发、焙烧和程序升温还原的方法,制备了无负载WP催化剂.利用XRD和BET对合成样品进行表征,采用TG/DTA方法对催化剂前体的氢还原过程进行考察.以制备的磷化钨为活性组分,Al2O3为稀释剂,在空速为4h-1、氢油比为1000、反应压力为3.0MPa、不同反应温度的条件下,对吡啶加氢脱氮、噻吩加氢脱硫和模型化合物为二苯并噻吩(含3000ppm硫)、喹啉(含2000ppm磷)和环己烷(溶剂)加氢脱硫(HDS)和加氢脱氮(HDN)反应活性进行测定,结果表明:无负载WP催化剂有相当的活性,其对大分子脱氮、脱硫活性明显优于对小分子脱氮、脱硫活性.  相似文献   

18.
分子筛催化剂上正十六烷的临氢异构化反应   总被引:13,自引:0,他引:13  
 对分子筛催化剂上正十六烷的临氢异构化反应进行了研究,考察了不同分子筛催化剂的活性和选择性,并对临氢异构化反应的产物分布进行了分析.在此基础上,对正十六烷的临氢异构化反应机理进行了初步探讨.结果表明,正十六烷在中孔分子筛催化剂上的临氢异构化反应主要在分子筛外表面和孔口进行,分子筛的择形作用对异构选择性的影响有限.这与一般情况下低分子量正构烷烃在择形分子筛上的临氢异构化反应有所不同.临氢异构化反应的异构选择性主要取决于催化剂酸性组分的酸性质,弱酸和中等强度的酸对异构化反应有利,而催化剂的活性则由酸性组分中B酸中心的数量和加氢组分的活性共同决定.  相似文献   

19.
左东华  李灿等 《催化学报》2002,23(3):271-275
分别以γ-Al2O3、无定形硅铝和含少量稀土分子筛的γ-Al2O3为载体,制备了不同系列的NiW体系加氢脱硫催化剂,并在连续流动微反装置上评价了催化剂对4,6-二甲基二苯并噻吩(DMDBT)加氢脱硫反应的催化性能。结果表明,NiW体系催化剂对该反应具有较高的芳烃加氢和脱硫活性;先加氢后脱硫是加氢脱硫(HDS)反应的主要途径,提高加氢活性是提高HDS活性最有效的途径;增强载体的酸性,直接脱硫和裂解活性均有所提高。同时,酸性载体负载的催化剂还显示出一定的异构化性能,但其加氢活性低于氧化铝负载的催化剂。酸性载体负载的NiW催化剂的异构化性能在邻二甲苯异构化反应中得到进一步证实。根据实验结果,讨论了NiW体系催化剂上DMDBT转化反应的不同途径。  相似文献   

20.
 采用高压滴流床反应器研究了在WHSV=30~90 h-1,p=5.0 MPa和θ=280~340 ℃的条件下,二苯并噻吩(DBT)在不同Ni含量的Ni-Mo/MCM-41催化剂样品上的加氢脱硫(HDS)反应动力学. 应用拟1级活塞流模型计算了该系列催化剂上的HDS反应的表观反应速率常数以及加氢反应路径和氢解反应路径的反应速率常数. 结果表明,加氢反应路径的速率常数和氢解反应路径的速率常数在同一个数量级上,说明在Ni-Mo/MCM-41上进行DBT的HDS反应时, 这两个平行的反应路径是并重的. 随着催化剂中Ni/Mo原子比的增大,两个反应路径的速率常数均增大,并在Ni/Mo原子比为0.75时达到最大值. 当Ni/Mo原子比增大到1.0时,两个反应路径的速率常数均大幅下降. 根据Arrhenius方程求得了DBT在Ni-Mo/MCM-41上进行HDS反应的表观活化能. 结果表明,催化剂的活性与表观活化能存在明显的相关关系,活化能越低,活性越高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号