首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A strategy for improved surface‐enhanced Raman spectroscopy (SERS) measurements that extends the variety of analytes accessible to SERS analysis is developed. The strategy involves inducing aggregation by mixing positively charged nanoparticles which form SERS‐active clusters when mixed with negatively charged silver nanoparticles fabricated using the Lee–Meisel process. To make positively charged nanoparticles, silver nanoparticles using the traditional Lee–Meisel process are fabricated and coated with a thin layer of silica and the silica modified with silane chemistry. Analytes with a significant amount of negative charge exhibit strong Raman bands when the strategy using these fabricated, positively charged nanoparticles for inducing cluster formation is used, enabling their detection and analysis. We envision the use of positively charged nanoparticles in cluster formation for expanding the range of analytes that can be detected using SERS and hence the range of applications SERS can play a role in. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In-situ monitoring of silver nanoparticle formation was studied in thin films of polyvinyl alcohol and silver nitrate. We proposed the observation of surface-enhanced Raman spectroscopy (SERS) as a novel and simple technique to record the growth of silver nanoparticles in polyvinyl alcohol thin films. Observed enhancement in the Raman bands of polyvinyl alcohol is explained through the localized surface plasmon resonance of silver nanoparticles. Influence of temperature generated by silver nanoparticles on the formation of nanoparticles is also discussed.  相似文献   

3.
Gelatin‐protected silver nanoparticles have been synthesized by a one‐pot, green method for surface‐enhanced Raman scattering (SERS) applications using gelatin as the reducing and stabilizing agent. The gelatin protection on silver nanoparticle surface helps improve its stability greatly and water dispersibility, while retaining high SERS activity of silver nanoparticles. The gelatin‐protected silver nanoparticles showed SERS signals as low as 100 nM of the typical Raman reporter molecules, RuBPY and R6G and 10 μM of other molecules of interest, melamine and folic acid. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A method to stabilize silver surface‐enhanced Raman spectroscopy (SERS) substrates for in situ, high‐temperature applications is demonstrated. Silver island films grown by thermal evaporation were coated with a thin layer (from 2.5 to 5 nm) of alumina by atomic layer deposition (ALD), which protects and stabilizes the SERS‐active substrate without eliminating the Raman enhancement. The temporal stability of the alumina‐coated silver island films was examined by measurement of the Raman intensity of rhodamine 6G molecules deposited onto bare and alumina‐coated silver substrates over the course of 34 days. The coated substrates showed almost no change in SERS enhancement, while the uncoated substrates exhibited a significant decrease in Raman intensity. To demonstrate the feasibility of the alumina‐coated silver substrate as a probe of adsorbates and reactions at elevated temperatures, an in situ SERS measurement of calcium nitrate tetrahydrate on bare and alumina‐coated silver was performed at temperatures ranging from 25 to 400 °C. ALD deposition of an ultrathin alumina layer significantly improved the thermal stability of the SERS substrate, thus enabling in situ detection of the dehydration of the calcium nitrate tetrahydrate at an elevated temperature. Despite some loss of Raman signal, the coated substrate exhibited greater thermal stability compared to the uncoated substrate. These experiments show that ALD can be used to synthesize stable SERS substrates capable of measuring adsorbates and processes at high temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Using sodium borohydride as the reducing agent and polyvinyl pyrrolidone (PVP, MW = 10 000) as the stabilizer, we obtained silver nanoparticles of various diameters (8–78 nm) from silver nitrate aqueous solutions in the concentration range from 0.001 to 0.1 M. The surface‐enhanced Raman scattering (SERS) from benzoic acid's ring‐breathing mode at 1003 cm−1 was detected from its dilute solutions (∼10−2 M) doped with these silver nanoparticles under 488‐nm laser excitation. The observed size dependences of SERS intensities fit quite well with those calculated by Schatz's theoretical model for spherical silver nanoparticles. The only exception occurred with the smallest particles (8 nm), possibly due to the failure of Maxwell's electromagnetic theory used in this model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Nanoporous thin films with silver nanoparticles were synthesized with a bottom–up approach, and its potential as effective surface‐enhanced Raman scattering (SERS) substrates was demonstrated. The use of mesoporous titania films as substrates allowed to control the growth of nanoparticles on the film surface. Atomic force microscopy measurements, Ultraviolet‐visible and X‐ray diffraction analysis confirmed the photoreduction of Ag+ to Ag0 with the formation of nanoparticles with crystallite dimensions of 32 to 36 nm. The new substrates allowed the detection of two analytes (rhodamine B isothiocyanate and cytochrome c), present in solutions at very low concentrations, highlighting their potential in SERS sensing. Reproducibility, homogeneity, enhancement factor of the substrate, consistency of results and detection limits were also assessed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A fast method for preparing of silver particle layers on glass substrates with high application potential for using in surface enhanced Raman spectroscopy (SERS) is introduced. Silver particle layers deposited on glass cover slips were generated in one-step process by reduction of silver nitrate using several reducing agents (ethylene glycol, glycerol, maltose, lactose and glucose) under ultrasonic irradiation. This technique allows the formation of homogeneous layers of silver particles with sizes from 80 nm up to several hundred nanometers depending on the nature of the used reducing agent. Additionally, the presented method is not susceptible to impurities on the substrate surface and it does not need any additives to capture or stabilize the silver particles on the glass surface. The characteristics of prepared silver layers on glass substrate by the above mentioned sonochemical approach was compared with chemically prepared ones. The prepared layers were tested as substrates for SERS using adenine as a model analyte. The factor of Raman signal enhancement reached up to 5·105. On the contrary, the chemically prepared silver layers does not exhibit almost any pronounced Raman signal enhancement. Presented sonochemical approach for preparation of silver particle layers is fast, simple, robust, and is better suited for reproducible fabrication functional SERS substrates than chemical one.  相似文献   

8.
以经过硅烷化后玻璃片为基底,之后吸附金纳米种子,采用柠檬酸钠为还原剂,在荧光灯照射条件下还原硝酸银,制备出基底表面具有银纳米粒子聚集结构的材料。采用透射电镜、扫描电镜和紫外可见分光光度计对产物的形貌和性质进行了表征,并考察银纳米粒子的形貌对其薄膜基底SERS活性的影响。结果表明:随着光照时间增加至16 h,金种子长大为平均粒径110 nm的不规则状多晶银纳米粒子,且出现双层粒子堆积。基底上纳米粒子的吸收光谱上出现了由银粒子的表面等离子体激元偶极子耦合引发的强烈吸收峰:随着光照时间的变化,耦合峰在600~813 nm波段内移动。光照时间为12 h后得到的SERS活性基底具有最强的SERS信号。  相似文献   

9.
以经过硅烷化后玻璃片为基底,之后吸附金纳米种子,采用柠檬酸钠为还原剂,在荧光灯照射条件下还原硝酸银,制备出基底表面具有银纳米粒子聚集结构的材料。采用透射电镜、扫描电镜和紫外可见分光光度计对产物的形貌和性质进行了表征,并考察银纳米粒子的形貌对其薄膜基底SERS活性的影响。结果表明:随着光照时间增加至16 h,金种子长大为平均粒径110 nm的不规则状多晶银纳米粒子,且出现双层粒子堆积。基底上纳米粒子的吸收光谱上出现了由银粒子的表面等离子体激元偶极子耦合引发的强烈吸收峰:随着光照时间的变化,耦合峰在600~813 nm波段内移动。光照时间为12 h后得到的SERS活性基底具有最强的SERS信号。  相似文献   

10.
Silver nanoparticles embedded in a dielectric matrix are investigated for their potential as broadband-absorbing optical sensor materials. This contribution focuses on the electrical properties of silver nanoparticles on glass substrates at various morphological stages. The electrical current through thin films, consisting of silver nanoparticles, was characterized as a function of film thickness. Three distinct conductivity zones were observed. Two relatively flat zones (“dielectric” for very thin films and “metallic” for films thicker than 300-400 Å) are separated by a sharp transition zone where percolation dominates. The dielectric zone is characterized by isolated particle islands with the electrical conduction dominated by a thermally activated tunneling process. The transition zone is dominated by interconnected silver nanoclusters—a small increase of the film thickness results in a large increase of the electrical conductivity. The metallic conductivity zone dominates for thicknesses above 300-400 Å.  相似文献   

11.
Silver particles with different degrees of aggregation were synthesized through a sodium dodecyl sulfate‐assisted one‐pot reaction in an aqueous medium. The products were characterized by transmission electron microscopy, scanning electron microscopy and UV‐visible spectroscopy. The results showed that the degree of aggregation of the Ag nanoparticles could be tuned by changing the reaction parameters, such as the reaction temperature and time. A possible formation process of the Ag aggregate is proposed on the basis of a series of experimental results. Moreover, the surface‐enhanced Raman scattering (SERS) effect of the Ag aggregates was evaluated by using rhodamine 6G as a Raman probe molecule. It was demonstrated that the SERS enhancement ability is related to the degree of aggregation of Ag particles, and a high SERS signal can be observed by selecting Ag nanoparticles with the proper degree of aggregation as substrates. Moreover, the aggregates showed good reproducibility and stability to SERS from organic molecules. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Three types of Ag‐coated arrays from porous anodic aluminum oxide (AAO) were prepared and studied as substrates for surface‐enhanced Raman scattering (SERS). They were compared with Ag‐coated porous silicon (PSi) samples. AAO‐based substrates were prepared by the vapor deposition of silver directly onto the surface of porous AAO with different morphologies of the pores, whereas SERS‐active island films on the PSi were prepared by immersion plating. The resulting metallic nanostructures were characterized by UV‐vis absorption spectroscopy and scanning electron microscopy (SEM). Thermal evaporation leads to the formation of granular arrays of Ag nanoparticles on the surface of AAO. SERS activity of the substrates was tested using water‐soluble cationic Zn(II)‐tetrakis (4‐N‐methylpyridyl) porphyrin (ZnTMPyP4) as a probe molecule. The results indicate that all AAO‐based substrates studied here exhibit some degree of SERS activity. Noteworthy, for excitation at 532 nm, signals from AAO‐based substrates were comparable with those from the PSi‐based ones, whereas for 441.6 nm excitation they were about twice higher. The strongest SERS‐enhancement at 441.6 nm excitationwas provided by the AAO substrates with silver deposited on the monolith (originally nonporous) side of AAO. Preferential SERS‐enhancement of the bands ascribed to the vibrations of the N‐methylpyridinium group of ZnTMPyP4 when going to blue excitation was found. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A comparative study of the solid substrates used in surface‐enhanced Raman scattering (SERS) based immunoassay is made in this paper. Five different substrates were prepared and divided into two groups with and without SERS activity. They are (1) a poly‐L ‐lysine slide, (2) a glutaraldehyde (GA)‐aminosilane slide, (3) a substrate assembled with silver nanoparticles, (4) a substrate assembled with silver nanoparticles and functionalized with GA–aminosilane and (5) a substrate assembled with gold nanoparticles, of which the first two are substrates are without SERS activity and the latter three are with SERS activity because of the existence of the metallic nanoparticles. The SERS experimental results show that the immunoassay performed on an SERS‐active substrate is more effective than that employing the inactive substrate. Among the inactive substrates, the GA–aminosilane slide with a better ability for antibody immobilization leads to a more sensitive immunoassay than the poly‐L ‐lysine slide. Moreover, for SERS‐based immunoassay, the substrate with assembled silver nanoparticles has an advantage of higher SERS enhancement capacity over the substrate assembled with gold nanoparticles. This work indicates that SERS‐active substrates play important and positive roles in sensitive SERS‐based immunoassay. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Raman and surface‐enhanced Raman scattering (SERS) spectra of dapsone by using colloidal silver nanoparticles have been recorded. Density functional theory was used for the optimization of ground state geometries and simulation of the vibrational spectrum of this molecule. The SERS spectrum with a large silver cluster as a model metallic surface was simulated for the first time. Taking into account the experimental and calculated Raman as well as the SERS normal modes and the corresponding assignments, along with the modeling of the free dapsone and the one in the presence of the colloidal silver nanoparticles, the importance of the sulfone group on the SERS effect in dapsone was inferred. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
We report a novel method for the fabrication of films of silver nanoparticle aggregates that are strongly attached to Si substrates (Thiol‐immobilized silver nanoparticle aggregates or TISNA). The attachment is achieved by chemically modifying the surface of a Si(100) surface in order to provide SH groups covalently linked to the substrate and then aggregating silver nanoparticles on these thiol covered surfaces. The transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) characterization show a high coverage with single nanoparticles or small clusters and a partial coverage with fractal aggregates that provide potential hot spots for surface enhanced Raman scattering (SERS). We have confirmed the SERS activity of these films by adsorbing rhodamine 6G and recording the Raman spectra at several concentrations. By using the silver‐chloride stretching band as an internal standard, the adsorbate bands can be normalized in order to correct for the effects of focusing and aggregate size, which determine the number of SERS active sites in the focal area. This allows a quantitative use of SERS to be done. The adsorption–desorption of rhodamine 6G on TISNA films is reversible. These features make our TISNA films potential candidates for their use in chemical sensors based on the SERS effect. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
In this work, an electroless deposition method for silver nanoparticles (AgNPs) on glass substrates was developed for use in surface‐enhanced Raman scattering (SERS) measurements. To obtain evenly distributed AgNPs of suitable size on the glass substrates, a seeding procedure was utilized as a pretreatment before the electroless deposition of AgNPs. The AgNPs thus formed were affected by both the seeding and growing procedures. To optimize the procedures for preparation of SERS substrates, several factors, including reaction time, the concentration of silver ions, and the concentration of reducing agents (glucose) for seeding and growing procedures, were varied. The morphologies of the seeds and the resulting AgNPs on the glass substrates were characterized by field‐emission scanning electron microscopy (FE‐SEM) and correlated with the SERS signals from probing with para‐nitrothiophenol (pNTP). The results indicated that only the seeding time and the concentration of silver ions significantly influenced the distribution and sizes of the Ag seeds on the substrates. In the growing procedures, both the concentration of silver nitrate and the reducing agent affected the morphologies of the resulting AgNPs and, hence, the SERS signals. The substrates prepared using this newly developed method offer 2–5 times improvement of the SERS signals compared to substrates prepared without seed treatment. Also, the AgNPs prepared by this method can be easily controlled to designated sizes with even spatial and size distributions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
采用无毒、绿色的酪氨酸作为还原剂和稳定剂,在碱性条件下还原硝酸银,经60 ℃恒温水浴处理20 min,成功地合成了银纳米粒子。混合溶液颜色由淡黄色变为棕黄色直观地呈现了银纳米粒子的生成。利用紫外可见吸收光谱(UV-Vis)和透射电子显微镜(TEM)对制备样品进行分析和表征。粒子的UV-Vis吸收在412 nm附近。TEM图像显示,银纳米粒子的形状近似球形,粒子直径在15~25 nm。分别以结晶紫(CV)和叶酸(FA)为探测分子,进一步研究了该银纳米粒子的表面增强拉曼散射(SERS)效应。实验结果表明,该合成方法不仅方便、快速、绿色环保,而且合成的银纳米粒子对CV和FA分子有很好的SERS效应。  相似文献   

18.
Raman spectra in solid and 1 M solution of L ‐cysteine and surface‐enhanced Raman scattering (SERS) spectra of this molecule in the zwitterionic form, by using colloidal silver nanoparticles, have been recorded. Density functional theory with the B3LYP functional was used for the optimizations of the ground state geometries and simulation of the vibrational spectrum of this amino acid. The SERS spectrum with a large silver cluster as a model metallic surface was simulated for the first time. Taking into account the experimental and calculated Raman and SERS vibrations and the corresponding assignments, as well as a comparison of force constants and geometrical parameters between the free zwitterion cysteine and the one in the presence of the colloidal silver nanoparticles, we can confirm the presence of gauche (PH) and trans (PN) rotamers in the solid state, the formation of a S S bond in the solution state, the dissociation of the peptide bond and mixing of rotamers because of the SERS effect, and the relative importance of the interaction of sulphyldryl, NH3+, and carboxylate groups with the metallic surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Formation and aggregation of photolytic silver nanoparticles at the surface of silver salt of carboxymethylcellulose films (CMCAg films) have been investigated. Detailed X-ray photoelectron spectroscopy (XPS) study and field emission type scanning electron microscopy (FE-SEM) observation have been carried out to characterize silver nanoparticles at the film surface. When the CMCAg films were irradiated with UV light in wet air at room temperature for 30–60 min, silver nanoparticles of ca. 10 nm size were formed at the irradiated surface. According to the FE-SEM observation, the growth of the particle diameter and aggregation of nanoparticles took place after prolonged irradiation, and finally, the irradiated side of the film surface was densely covered with the silver nanoparticles of ca. 35 nm size. Chemical composition analysis by the XPS measurements has confirmed the increase in the atomic concentration of silver with irradiation time. It is suggested that silver atoms and clusters can move in the film and precipitate at the irradiated surface.  相似文献   

20.
Nano silver films were prepared by the electrolysis method. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were employed to detect the morphology of the silver particles. The surface‐enhanced Raman scattering (SERS) spectra of the hemoglobin on nano silver film were recorded. It is seen from the SERS spectra that the nano silver films can enhance the Raman signals of the hemoglobin efficiently, and sodium citrate and phosphate buffered saline have no influence on the SERS spectra of hemoglobin. The electrolysis technique to fabricate this highly bioactive, stable, reusable, and low‐cost SERS substrate will be useful in the development of hemoglobin detection methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号