首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic ferroelectrics due to their low cost, easy preparation, light weight, high flexibility and phase stability are gaining tremendous attention in the field of portable electronics. In this work, we report the synthesis, structure and ferroelectric behavior of a two-component ammonium salt 2 , containing a bulky [Bn(4-BrBn)NMe2]+ (Bn=benzyl and 4-BrBn=4-bromobenzyl) cation and tetrahedral (BF4) anion. The structural analysis revealed the presence of rich non-classical C−H⋅⋅⋅F and C−H⋅⋅⋅Br interactions in this molecule that were quantified by Hirshfeld surface analysis. The polarization (P) vs. electric field (E) hysteresis loop measurements on 2 gave a remnant polarization (Pr) of 14.4 μC cm−2 at room temperature. Flexible polymer composites with various (5, 10, 15 and 20) weight percentages (wt%) of 2 in thermoplastic polyurethane (TPU) were prepared and tested for mechanical energy harvesting applications. A notable peak-to-peak output voltage of 20 V, maximum current density of 1.1 μA cm−2 and power density of 21.1 μW cm−2 were recorded for the 15 wt% 2 -TPU composite device. Furthermore, the voltage output generated from this device was utilized to rapidly charge a 100 μF capacitor, with stored energies and measured charges of 156 μJ and 121.6 μC, respectively.  相似文献   

2.
3.
A series of neutral long‐lived purely organic radicals based on the stable [4‐(N‐carbazolyl)‐2,6‐dichlorophenyl]bis(2,4,6‐trichlorophenyl)methyl radical adduct (Cbz‐TTM) is reported herein. All compounds exhibit ambipolar charge‐transport properties under ambient conditions owing to their radical character. High electron and hole mobilities up to 10?2 and 10?3 cm2 V?1 s?1, respectively, were achieved. Xerographic single‐layered photoreceptors were fabricated from the radicals studied herein, exhibiting good xerographic photosensitivity across the visible spectrum.  相似文献   

4.
Natural materials, such as bone and spider silk, possess remarkable properties as a result of sophisticated nanoscale structuring. They have inspired the design of synthetic materials whose structure at the nanoscale is carefully engineered or where nanoparticles, such as rods or wires, are self‐assembled. Although much work has been done in recent years to create ordered structures using diblock copolymers and template‐assisted assembly, no reports describe highly ordered, three‐dimensional nanotube arrays within a polymeric material. There are only reports of two‐dimensional network structures and structures on micrometer‐size scales. Here, we describe an approach that uses plasticized colloidal particles as a template for the self‐assembly of carbon nanotubes (CNTs) into ordered, three‐dimensional networks. The nanocomposites can be strained by over 200% and still retain high conductivity when relaxed. The method is potentially general and so may find applications in areas such as sensing, photonics, and functional composites.

  相似文献   


5.
Considering the potential applications of all‐polymer solar cells (all‐PSCs) as wearable power generators, there is an urgent need to develop photoactive layers that possess intrinsic mechanical endurance, while maintaining a high power‐conversion efficiency (PCE).Herein a strategy is demonstrated to simultaneously control the intercalation behavior and nanocrystallite size in the polymer–polymer blend by using a newly developed, high‐viscosity polymeric additive, poly(dimethylsiloxane‐co‐methyl phenethylsiloxane) (PDPS), into the TQ‐F:N2200 all‐PSC matrix. A mechanically robust 10wt% PDPS blend film with a great toughness was obtained. Our results provide a feasible route for producing high‐performance ductile all‐PSCs, which can potentially be used to realize stretchable all‐PSCs as a linchpin of next‐generation electronics.  相似文献   

6.
7.
All‐solid‐state sodium batteries (ASSSBs) with nonflammable electrolytes and ubiquitous sodium resource are a promising solution to the safety and cost concerns for lithium‐ion batteries. However, the intrinsic mismatch between low anodic decomposition potential of superionic sulfide electrolytes and high operating potentials of sodium‐ion cathodes leads to a volatile cathode–electrolyte interface and undesirable cell performance. Here we report a high‐capacity organic cathode, Na4C6O6, that is chemically and electrochemically compatible with sulfide electrolytes. A bulk‐type ASSSB shows high specific capacity (184 mAh g?1) and one of the highest specific energies (395 Wh kg?1) among intercalation compound‐based ASSSBs. The capacity retentions of 76 % after 100 cycles at 0.1 C and 70 % after 400 cycles at 0.2 C represent the record stability for ASSSBs. Additionally, Na4C6O6 functions as a capable anode material, enabling a symmetric all‐organic ASSSB with Na4C6O6 as both cathode and anode materials.  相似文献   

8.
9.
All‐polymer solar cells (all‐PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)‐based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state‐of‐the‐art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI‐based polymer acceptor. Herein, a rhodanine‐based dye molecule was introduced into the NDI‐based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up‐shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive‐free all‐PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all‐PSCs to date. These results indicate that incorporating a dye into the n‐type polymer gives insight into the precise design of high‐performance polymer acceptors for all‐PSCs.  相似文献   

10.
Three different copolymers of C60‐carrying‐carbazole and fluorene units with different copolymer composition ratios were designed and synthesized. On the basis of photoluminescence, atomic force microscopy, and Vis‐NIR and Raman spectroscopic analysis, we found that these copolymers solubilize only semiconducting single‐walled carbon nanotubes (sem‐SWNTs) to form copolymer/sem‐SWNT hybrids, in which energy transfer from the copolymer/C60 moieties to the SWNTs was revealed. By comparing two possible hybrid structures with molecular‐mechanics simulations, the greatest stabilization was found when the C60 moieties lay on the sem‐SWNT surfaces.  相似文献   

11.
12.
A series of high‐performance polymer/carbon nanotube (CNT) composites with different nanotube contents have been prepared via condensation of N‐silylated diamino terminated precursor of the polymer with acid chloride‐functionalized CNTs and subsequent thermal cyclodehydration. The composites have been fully characterized by infrared and Raman spectroscopy, electron microscopy, and thermal analysis. Various interesting morphologic features including helical structures have been observed in the composites as a result of covalent attachment of the polymer. The composites exhibit excellent thermal stability and a significant improvement in the dielectric constant and mechanical strength with the inclusion of CNTs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
14.
For a dielectric elastomer, increasing its dielectric constant substantially could lead to a high electric field induced strain under a low operation field. In this work, high dielectric constant nanocomposites were developed by chemically bonding copper phthalocyanine oligomer (CuPc), a high dielectric constant organic semiconductor, to polyurethane (PU). Transmission electron microscope‐observed morphologies revealed that the sizes of CuPc particles in a nanocomposite of PU attached with 8.78 vol.% of CuPc were in the range of 10–20 nm, much smaller than the sizes (250–600 nm) in physical blend of PU with the same volume fraction of CuPc. At 100 Hz, the nanocomposite film exhibited a dielectric constant of 391, representing a more than 60 times increase with respect to the neat PU. The enhanced dielectric response in the nanocomposite makes it possible to induce a high electromechanical response. A strain of 17.7% and an elastic energy density of 0.927 J/cm3 were achieved under an electric field of 10 V/µm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Water‐soluble single‐ and multi‐walled carbon nanotubes (CNTs) were prepared by grafting polyacrylamide chains from the graphitic surface via ceric ion‐induced redox radical polymerization. The reducing functionalities were covalently attached to the tubes by peroxide‐assisted radical reaction. The results showed that polymer chains were grafted onto CNTs by the redox process. The redox radical polymerization initiated by carbon nanotube‐bearing functionalities not only provides a powerful strategy for modifying the carbon nanostructures but also gives us the knowledge of their sidewall chemistry.

  相似文献   


16.
We designed and synthesized 4‐dodecyloxybenzenediazonium tetrafluoroborate ( 1 ), which preferentially reacts with metallic single‐walled carbon nanotubes (SWNTs) by kinetic control. We first determined the suitable experimental conditions for the preferential reaction of 1 with individually dissolved SWNTs by monitoring the decrease in absorbance for the metallic SWNT in the range of 400–650 nm in the absorption spectrum of the SWNTs. The reacted SWNTs were thoroughly rinsed with THF to obtain THF‐insoluble SWNTs. The Raman spectrum of the THF‐insoluble SWNTs showed a strong peak near 180 cm?1, which corresponds to a semiconducting breathing band. The metallic breathing bands (≈220 cm?1) and Breit–Wingner–Fano (BWF) modes (1520 cm?1) corresponding to the metallic SWNTs were much weaker than those of the pristine SWNTs. We also confirmed that metallic peaks in the range of 400–650 nm in the absorption spectrum of THF‐insoluble SWNTs that were individually dissolved in an aqueous micelle of sodium cholate were almost nondetectable. All the results indicate that the THF‐insoluble SWNTs are semiconducting.  相似文献   

17.
Cerium oxide‐filled high density polyethylene (HDPE) composites for microwave substrate applications were prepared by sigma‐blend technique. The HDPE was used as the matrix and the dispersion of CeO2 in the composite was varied up to 0.5 by volume fraction, and the dielectric properties were studied at 1 MHz and microwave frequencies. The variations of thermal conductivity (keff), coefficient of thermal expansion (αc) and Vicker's microhardness with the volume fraction of the filler were also measured. The relative permittivity (εeff) and dielectric loss (tan δ) were found to increase with increase in CeO2 content. For 0.4 volume fraction loading of the ceramic, the composite had εeff = 5.7, tan δ = 0.0068 (at 7 GHz), keff = 2.6 W/m °C, αc = 98.5 ppm/°C, Vicker's microhardness of 18 kg/mm2 and tensile strength of 14.6 MPa. Different theoretical approaches have been used to predict the effective permittivity, thermal conductivity, and coefficient of thermal expansion of composite systems and the results were compared with the experimental data. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 998–1008, 2010  相似文献   

18.
颗粒填充聚合物高介电复合材料   总被引:2,自引:0,他引:2  
颗粒填充聚合物高介电复合材料兼具聚合物材料的易加工、低损耗、耐击穿性能和陶瓷材料的高介电等性能,还可使金属材料具备介电性能,可以广泛应用于电气、电子行业。本文综述了非均匀体系介电理论研究的历史背景,以及陶瓷、金属颗粒填充聚合物高介电复合材料的组成、制备及介电性能的影响因素,并着重讨论了界面相在复合材料研究中的重要性,最后展望了发展方向。  相似文献   

19.
20.
Bionanocomposites of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (P3HB3HHx) (13 % by mol of HHx) with multiwalled carbon nanotubes (MWCNTs) were prepared to obtain semiconductive nanocomposites for potential applications as scaffolds for nerve repair. The effect of the polymer/nanotube interface on the composite properties was studied using oxidized (oxi‐MWCNTs) and surface modified MWCNTs with low‐molecular weight P3HB3HHx (pol‐MWCNTs), in a ratio from 0.3 to 1.2 wt % for each type of MWCNTs employed. Morphology and conductive properties of the composites indicated a good interaction between pol‐MWCNTs and the polymer matrix. Composites with improved conductivity were obtained with only 0.3 wt % of pol‐MWCNTs added. However, agglomeration and lower conductivity was observed for samples with oxi‐MWCNTs. Cell viability studies carried out with neurospheres showed that samples with 1.2 wt % of pol‐MWCNTs are not cytotoxic and, in addition favors the neurospheres growth on the composite surface. Considering the electrical properties and biological behavior, nanocomposites of P3HB3HHx and pol‐MWCNTs are promising substrates for the regeneration of nerve tissue. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 349–360  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号