首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature–dependent Raman studies of disodium dimolybdate (Na2Mo2O7) crystal are reported. Lattice dynamical calculation was used to predict both wavenumbers and atomic displacements (eigenvectors) for the vibrational modes. These calculations were based on the classical rigid‐ion model. The high‐temperature Raman scattering study of the crystal showed that it remains in the orthorhombic structure in the 8–848 K range and undergoes a structural phase transition between 848 and 854 K. This phase transition is most likely connected with weak tiltings and/or rotations of both MoO4 (tetrahedra) and MoO6 (octahedra) units, which lead to a disorder in the oxygen sublattice. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
We revisit the assignment of Raman phonons of rare‐earth titanates by performing Raman measurements on single crystals of O18 isotope‐rich spin ice and nonmagnetic pyrochlores and compare the results with their O16 counterparts. We show that the low‐wavenumber Raman modes below 250 cm−1 are not due to oxygen vibrations. A mode near 200 cm−1, commonly assigned as F2g phonon, which shows highly anomalous temperature dependence, is now assigned to a disorder‐induced Raman active mode involving Ti4+ vibrations. Moreover, we address here the origin of the ‘new’ Raman mode, observed below TC ~ 110 K in Dy2Ti2O7, through a simultaneous pressure‐dependent and temperature‐dependent Raman study. Our study confirms the ‘new’ mode to be a phonon mode. We find that dTC/dP = + 5.9 K/GPa. Temperature dependence of other phonons has also been studied at various pressures up to ~8 GPa. We find that pressure suppresses the anomalous temperature dependence. The role of the inherent vacant sites present in the pyrochlore structure in the anomalous temperature dependence is also discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The Raman lattice modes in the LiCsSO4 crystal were measured in the temperature range of 17–303 K. Two right‐angle scattering geometries were used: z(xx)y and z(xz)y, to observe Ag and Bg (or B2g) modes, respectively. Critical phenomena were observed in the spectra at temperatures of about 200, 180 and 100 K. They correspond to structural phase transitions in the crystal from D2h to C2h at 200 K and to Cs symmetry at 100 K. The nature of the transition at 180 K is supposed to be of a lock‐in type, but it needs further investigation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The mode assignment of the cubic phase of anhydrous Na2MoO4 was carried out on the basis of lattice dynamic calculation using the classical rigid‐ion model. Temperature‐dependent studies indicate that this crystal remains in the cubic structure in the 15–773 K range and undergoes a phase transition at around 783 K. The behavior of the Raman modes indicates that this transition is strongly first‐order in nature and the phase above 773 K may have an orthorhombic symmetry. This transition is connected with tilting and/or rotations of the MoO4 tetrahedra, which lead to a disorder at the MoO4 sites. Our results give also evidence that the Mo O bond lengths decrease in the high‐temperature phase. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
A comparative, temperature‐dependent (80–500 K at 5 K intervals), micro‐Raman spectroscopic study of 300 and 50 nm diameter ceramic BaTiO3 nanoparticles was carried out with the purpose of elucidating the nanoparticle size effect on the temperature dependence of the polar and non‐polar phonons. A method for calibrating Raman intensities, along with an iterative spectral fitting algorithm, is proposed for concurrent Raman band position and intensity analysis, increasing the analytical abilities of single temperature point Raman spectroscopy. The 300 nm particles exhibit all three phase transitions, whereas the 50 nm particles do not show evidence of these phase transitions in the same temperature range. The Curie temperature appears to be a phonon converging point, irrespective of the phonon symmetry. An attempt was made to qualitatively relate the temperature‐dependent Raman spectra to complimentary non‐spectroscopic methods, such as heat capacity and X‐ray diffraction studies. The study proves that the temperature‐dependent behavior of the polar phonon, 265 cm−1, can be utilized as a sensitive phase transition probe. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
We have measured polarized Raman spectra of MnWO4 single crystals at low temperatures, and studied the temperature dependence of the various phonon modes. From our Raman studies of the MnWO4, a new transition temperature, ∼180 K, was found. We have completely assigned the symmetries of the 18 observed Raman modes of the MnWO4, as expected from a group theoretical analysis. These Raman modes have been classified into three groups according to weak, intermediate and strong temperature dependence of the modes in each group. Six internal modes have been identified by their weak temperature dependence of the Raman wavenumbers. The temperature dependence of the wavenumbers of the Bg modes in Mg O bonds, modes of intermediate temperature dependence group, shows an anomalous behavior under 50 K. The phonon modes of strong temperature dependence show an anomalous change at ∼180 K in the linewidths. This is believed to be a new transition temperature which involves the changes in the inter‐WO6 octahedra structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This work reports the temperature‐dependent Raman scattering study of mutiferroic BiFeO3 (BFO) bulk ceramics in a wide temperature range of 93–843 K. The polycrystalline samples are sintered at four different temperatures and characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), vibrating sample magnetometry, differential scanning calorimetry (DSC), and optical microscopy. The microstructure shows remarkable changes in terms of grain size and domain pattern as the sintering temperature increases. The DSC curves show prominent exothermic peaks at 645 K, the antiferromagnetic–paramagnetic phase transition temperature. The Raman spectra of all the four specimens reveal strong anomalies in the vicinity of the Neel temperature, which can be attributed to the multiferroic nature of BFO. The Raman scattering studies also reveal considerable spectral changes at a temperature range of 140–200 K in all the specimens, which can be inferred to a further spin–reorientation transition exhibited in BFO at a cryogenic temperature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Raman and infrared (IR) spectra of defect pyrochlores TaWO5.5, NH4SbWO6·H2O, HSbWO6·H2O, LiSbWO6·H2O, NaSbWO6·H2O, KSbWO6, RbSbWO6, CsSbWO6, and TlSbWO6 were measured. The obtained spectra are discussed using the factor group approach for the cubic Fd‐3m space group, and assignment of bands to respective motions of atoms is proposed. Our results show that the phonon properties of the pyrochlores are strongly affected by disorder, and therefore Raman and IR spectroscopies are very useful tools in studying disorder in this family of compounds. In particular, our studies have shown that in these ionic conductors disorder at sites occupied by NH , H+, or alkali‐metal ions decreases with increasing size and mass of these ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The temperature‐dependent Raman spectra of ferroelectric Bi4−xNdxTi3O12(x = 0, 0.5, 0.85) single crystals were recorded from 100 to 800 K. It was found that there is a critical Nd content x0 between 0.5 and 0.85. The Nd3+ ions prefer to replace Bi3+ ions in pseudo‐perovskite layers when x < x0, while they might begin to incorporate into (Bi2O2)2+ layers when xx0. Nd substitution leads to a decrease in the ferroelectric–paraelectric transition temperature (Tc). A monoclinic distortion of orthorhombic structure occurs in Bi4Ti3O12 crystals at temperatures below 200 K. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Yellow pyroantimonates Pb Sb, Pb Sb Sn and Pb Sb Zn were synthesized by solid‐state reactions at high temperature and characterized by X‐ray diffraction and Raman spectroscopy. The lattice size of cubic pyrochlores increases with Sn and Zn doping and with Pb overstoichiometry, indicating the replacement of Sb5+ by the larger cations. This fact permits the understanding of the corresponding Raman spectral modifications as a consequence of the changes in the local symmetry of the Sb O polyhedra, justifying the exploitation of Raman spectroscopy to noninvasively identify structural modifications of pyroantimonate pigments in artworks. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
12.
In this work, we have performed Raman scattering measurements in Ba2BiSbO6 ceramics in the temperature range from 10 to 573 K. The Raman spectra were examined using group theory to analyze the decomposition of the reducible representation of the vibrational modes and with a virtual octahedral model. At room temperature, five modes were observed. At low temperatures, the spectra subtly showed the rhombohedral–monoclinic phase transition, which was identified by changes in the Raman intensity of the bending and symmetrical stretching SbO6 octahedral modes. The cubic–rhombohedral phase transition was not clearly evident in the high‐temperature Raman data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
14.
We report dramatically different behaviors between isostructural Gd2Ti2O7 and Gd2Zr2O7 pyrochlore at pressures up to 44 GPa, in which the substitution of Ti for Zr significantly increases structural stability. Upon release of pressure, the Gd2Ti2O7 becomes amorphous. In contrast, the high-pressure phase of Gd2Zr2O7 transforms to a disordered defect-fluorite structure. First-principle calculations for both compositions revealed that the response of pyrochlore to high pressure is controlled by the intrinsic energetics of defect formation.  相似文献   

15.
Using neutron diffraction, 170Yb M?ssbauer and muon spin relaxation spectroscopies, we have examined the pyrochlore Yb2Ti2O7, where the Yb3+S' = 1/2 ground state has planar anisotropy. Below approximately 0.24 K, the temperature of the known specific-heat lambda transition, there is no long range magnetic order. We show that the transition corresponds to a first-order change in the fluctuation rate of the Yb3+ spins. Above the transition temperature, the rate, in the GHz range, follows a thermal excitation law, whereas below, the rate, in the MHz range, is temperature independent, indicative of a quantum fluctuation regime.  相似文献   

16.
Silicon carbide (SiC) is often used for electronic devices operating at elevated temperatures. Spectroscopic temperature measurements are of high interest for device monitoring because confocal Raman microscopy provides a very high spatial resolution. To this end, calibration data are needed that relate Raman line‐shift and temperature. The shift of the phonon wavenumbers of single crystal SiC was investigated by Raman spectroscopy in the temperature range from 3 to 112°C. Spectra were obtained in undoped 6H SiC as well as in undoped and nitrogen‐doped 4H SiC. All spectra were acquired with the incident laser beam oriented parallel as well as perpendicular to the c‐axis to account for the anisotropy of the phonon dispersion. Nearly all individual peak centers were shifting linearly towards smaller wavenumbers with increasing temperature. Only the peak of the longitudinal optical phonon A1(LO) in nitrogen‐doped 4H SiC was shifting to larger wavenumbers. For all phonons, a linear dependence of the Raman peaks on both parameters, temperature and phonon frequency, was found in the given temperature range. The linearity of the temperature shift allows for precise spectroscopic temperature measurements. Temperature correction of Raman line‐shifts also provides the ability to separate thermal shifts from mechanically induced ones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The experimental and theoretical vibrational spectra of 2‐fluorophenylboronic acid (2fpba) were studied. The Fourier transform Raman and Fourier transform infrared spectra of the 2fpba molecule were recorded in the solid phase. The structural and spectroscopic analysis of the molecule was carried out by using Hartree‐Fock and density functional harmonic calculations. For the title molecule, only one form was found to be the most stable structure, by using B3LYP level with the 6‐31++G(d,p) basis set. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution (TED). The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the 2fpba molecule were calculated using the Gauge‐Invariant‐ atomic orbital (GIAO) method in DMSO solution using IEF‐PCM model and compared with the experimental data. Finally, geometric parameters, vibrational wavenumbers and chemical shifts were compared with available experimental data of the molecule. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Infrared and Raman spectra of the polycrystalline samples and single crystals of Sr2ZnGe2O7, Ba2ZnGe2O7, Ba2MgGe2O7 and Sr2MgGe2O7 were measured. The temperature dependence of phonons was studied in the range 4–295 K. The discussion of the results is based on the factor group approach for the tetragonal space group with Z = 2. The discussion of the internal vibrations of the Ge2O7 unit and external modes is made on the basis of the literature data and phonon calculations. The results obtained for the spontaneous Raman scattering were used in the discussion of the stimulated Raman spectra of the studied materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Anomalous temperature dependence of Raman phonon wavenumbers attributed to phonon–phonon anharmonic interactions has been studied in two different families of pyrochlore titanates. We bring out the role of the ionic size of titanium and the inherent vacancies of pyrochlore in these anomalies by studying the effect of replacement of Ti4 + by Zr4 + in Sm2Ti2O7 and by stuffing Ho3 + in place of Ti4 + in Ho2Ti2O7 with appropriate oxygen stoichiometry. Our results show that an increase in the concentration of the larger ion, i.e. Zr4 + or Ho3 +, reduces the phonon anomalies, thus implying a decrease in the phonon–phonon anharmonic interactions. In addition, we find signatures of coupling between a phonon and crystal field transition in Sm2Ti2O7, manifested as an unusual increase in the phonon intensity with increasing temperature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Low‐temperature Raman study of (001)‐oriented PrFeO3 thin film of around 200 nm thickness deposited on a LaAlO3 (001) substrate by using the pulsed‐laser deposition technique is presented. X‐ray diffraction analysis of this film shows an orthorhombic structure with Pbnm space group. The observed substrate‐induced strain is found to be small. In the room temperature Raman spectra, different Raman modes were observed that were classified according to the orthorhombic structure. All the observed modes show a decrease in wavenumber with rise in temperature, except the B1g mode (624 cm−1) which shows some anomalous behavior. We tried to correlate the variations in linewidth and position with temperature for the observed modes with the octahedral disorder of FeO6. Many possibilities are presented to explain the observed results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号