共查询到20条相似文献,搜索用时 15 毫秒
1.
采用原子转移自由基聚合(ATRP)法制得了端基分别为烯丙基和溴原子的聚二甲基丙烯酰胺(PDMAAm),经叠氮基亲核取代后与端炔基聚二甲基硅氧烷进行点击反应,得到两亲三嵌段聚合物。利用^1HNMR、FTIR、GPC等测试方法对聚合物的结构进行了表征。结果表明:采用ATRP法合成的PDMAAm均聚物分子量分布较窄,通过点击化学法将热力学不相容的亲水性PDMAAm链段及疏水性聚二甲基硅氧烷(PDMS)链段制备PDMAAmPDMS—PDMAAm嵌段聚合物,是一种高效易行的方法。 相似文献
2.
Jean‐Franois Lutz Hans G. Brner Katja Weichenhan 《Macromolecular rapid communications》2005,26(7):514-518
Summary: The bromine chain ends of well‐defined polystyrene ( = 2 700 g · mol−1, = 1.11) prepared using ATRP were successfully transformed into various functional end groups (ω‐hydroxy, ω‐carboxyl and ω‐methyl‐vinyl) by a two‐step pathway: (1) substitution of the bromine terminal atom by an azide function and (2) 1,3‐dipolar cycloaddition of the terminal azide and functional alkynes (propargyl alcohol, propiolic acid and 2‐methyl‐1‐buten‐3‐yne). The “click” cycloaddition was catalyzed efficiently by the system copper bromide/4,4′‐di‐(5‐nonyl)‐2,2′‐bipyridine. In all cases, 1H NMR spectra indicated quantitative transformation of the chain ends of polystyrene into the desired function.
3.
ATRP与点击化学结合制备树状星型聚合物 总被引:2,自引:0,他引:2
本文通过将ATRP技术和点击化学相结合的方法来制备树状星型聚合物[(PMMA)2PSt]4. 首先通过1,3-偶极环加成反应对ATRP的核预聚物进行端基修饰, 得到后继ATRP反应的大分子引发剂, 进而引发第二单体的ATRP聚合生成树状星型聚合物. 相似文献
4.
Xiubo Jiang Yi Shi Wen Zhu Yongming Chen Fu Xi 《Journal of polymer science. Part A, Polymer chemistry》2012,50(20):4239-4245
Well‐defined mikto‐topology star polystyrene composed of one cyclic arm and four linear arms was synthesized by a combination of atom transfer radical polymerization (ATRP) and Cu‐catalyzed azide‐alkyne cycloaddition (CuAAC) click reaction. First, the bromine‐alkyne α,ω‐linear polystyrenes containing four hydroxyl groups protected with acetone‐based ketal groups were synthesized by ATRP of styrene using a designed initiator. Then, the bromine end‐group was converted to the azide and the linear polystyrene was cyclized intra‐molecularly by the CuAAC reaction. The four hydroxyl groups were released by deprotection and then esterified with 2‐bromoisobutyryl bromide to produce a cyclic polymer bearing four ATRP initiating units. By subsequent ATRP of styrene to grow linear polymers with the cyclic polystyrene as a macroinitiator, the mikto‐topology star polymers were prepared. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
5.
利用原子转移自由基聚合(ATRP)与点击反应相结合制备环状聚合物. 根据ATRP原理, 用含端炔的有机卤化物作为引发剂时, 产物的一端为炔基, 另一端则为卤素原子, 而卤素原子本身可作为叠氮化物的原料, 从而可利用点击反应使聚合物成环. 相似文献
6.
Yun Wang Lu Lu Hu Wang Dairen Lu Kang Tao Ruke Bai 《Macromolecular rapid communications》2009,30(22):1922-1927
A facile strategy for synthesis of α‐heterobifunctional polystyrenes is reported. The novel functional polystyrenes have been successfully synthesized via a combination of atom transfer radical polymerization (ATRP) and chemical modification of end‐functional groups. First, ε‐caprolactone end‐capped polystyrenes with controlled molecular weight and low polydispersity were prepared by ATRP of styrene using α‐bromo‐ε‐caprolactone (αBrCL) as an initiator. Then, removal of the terminal bromine atom was performed with iso‐propylbenzene in the presence of CuBr/PMDETA. Finally, ring‐opening modifications of the caprolactone group were carried out with amines, n‐butanol and H2O to produce novel polystyrenes containing two different functional groups at one end.
7.
Emile Jubeli Laurence Moine Gillian Barratt 《Journal of polymer science. Part A, Polymer chemistry》2010,48(14):3178-3187
The aim of this work was to prepare nanoparticles bearing sugar residues at their surface through the synthesis of amphiphilic block copolymer of poly d,l‐lactide (PLA) and poly(ethylene glycol)methacrylate, with the hydrophilic part terminating with glucopyranoside molecules as a model for any carbohydrate ligand. The construction was achieved by a combination of click chemistry, ring‐opening polymerization, and atom transfer radical polymerization. The modified monomer and resulting copolymer were characterized by NMR, SEC, and FTIR. Nanoparticles with a mean hydrodynamic diameter of <200 nm as determined by quasi‐elastic light scattering were prepared from the amphiphilic copolymer by nanoprecipitation using dimethylformamide (DMF) as water‐miscible solvent. In the range of 2.5–10 mg copolymer/mL DMF, the polymer concentration did not have much effect on the size of the nanoparticles. Accessibility of glucopyranoside molecules on the surface of the nanoparticles was confirmed by formation of aggregates from nanoparticles in the presence of concanavalin A observed by transmission electronic microscopy. Finally, no significant cytotoxicity toward human umbilical vein endothelial cells was detected for the final nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3178–3187, 2010 相似文献
8.
9.
10.
The combination of atom transfer radical polymerization (ATRP) and click chemistry has created unprecedented opportunities for controlled syntheses of functional polymers. ATRP of azido‐bearing methacrylate monomers (e.g., 2‐(2‐(2‐azidoethyoxy)ethoxy)ethyl methacrylate, AzTEGMA), however, proceeded with poor control at commonly adopted temperature of 50 °C, resulting in significant side reactions. By lowering reaction temperature and monomer concentrations, well‐defined pAzTEGMA with significantly reduced polydispersity were prepared within a reasonable timeframe. Upon subsequent functionalization of the side chains of pAzTEGMA via Cu(I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) click chemistry, functional polymers with number‐average molecular weights (Mn) up to 22 kDa with narrow polydispersity (PDI < 1.30) were obtained. Applying the optimized polymerization condition, we also grafted pAzTEGMA brushes from Ti6Al4 substrates by surface‐initiated ATRP (SI‐ATRP), and effectively functionalized the azide‐terminated side chains with hydrophobic and hydrophilic alkynes by CuAAC. The well‐controlled ATRP of azido‐bearing methacrylates and subsequent facile high‐density functionalization of the side chains of the polymethacrylates via CuAAC offers a useful tool for engineering functional polymers or surfaces for diverse applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1268–1277 相似文献
11.
Ikhlas Gadwal Prakash P. Wadgaonkar Amol B. Ichake Shivshankar R. Mane 《Journal of polymer science. Part A, Polymer chemistry》2019,57(2):146-156
A new approach was developed for synthesis of certain A3B3‐type of double hydrophilic or amphiphilic miktoarm star polymers using a combination of “grafting onto” and “grafting from” methods. To achieve the synthesis of desired miktoarm star polymers, acetyl protected poly(ethylene glycol) (PEG) thiols (Mn = 550 and 2000 g mol?1) were utilized to generate A3‐type of homoarm star polymers through an in situ protective group removal and a subsequent thiol–epoxy “click” reaction with a tris‐epoxide core viz. 1,1,1‐tris(4‐hydroxyphenyl)ethane triglycidyl ether. The secondary hydroxyl groups generated adjacent to the core upon the thiol–epoxy reaction were esterified with α‐bromoisobutyryl bromide to install atom transfer radical polymerization (ATRP) initiating sites. ATRP of N‐isopropylacrylamide (NIPAM) using the three‐arm star PEG polymer fitted with ATRP initiating sites adjacent to the core afforded A3B3‐type of double hydrophilic (PEG)3[poly(N‐isopropylacrylamide)] (PNIPAM)3 miktoarm star polymers. Furthermore, the generated hydroxyl groups were directly used as initiator for ring‐opening polymerization of ε‐caprolactone to prepare A3B3‐type of amphiphilic (PEG)3[poly(ε‐caprolactone)]3 miktoarm star polymers. The double hydrophilic (PEG)3(PNIPAM)3 miktoarm star polymers showed lower critical solution temperature around 34 °C. The preliminary transmission electron microscopy analysis indicated formation of self‐assembly of (PEG)3(PNIPAM)3 miktoarm star polymer in aqueous solution. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 146–156 相似文献
12.
Laetitia Mespouille Magali Vachaudez Fabian Suriano Pascal Gerbaux Olivier Coulembier Philippe Dege Robert Flammang Philippe Dubois 《Macromolecular rapid communications》2007,28(22):2151-2158
Well‐defined amphiphilic PCL‐b‐PDMAEMA block copolymers were successfully synthesized by a combination of ATRP and “click” chemistry following either a commutative two‐step procedure or a straightforward one‐pot process using CuBr · 3Bpy as the sole catalyst. Compared to the traditional coupling method, combining ATRP and click chemistry even in a “one‐pot” process allows the preparation of PCL‐b‐PDMAEMA diblock copolymers characterized by a narrow molecular weight distribution and quantitative conversion of azides and alkynes into triazole functions. Moreover, the amphiphilic character of these copolymers was demonstrated by surface tension measurements and critical micellization concentration was calculated.
13.
Satu Strandman Petri Pulkkinen Heikki Tenhu 《Journal of polymer science. Part A, Polymer chemistry》2005,43(15):3349-3358
The effect of the steric hindrance on the initiating properties of two multifunctional resorcinarene‐based initiators in atom transfer radical polymerization (ATRP) was studied by using Cu(I)‐complexes of three multidentate amine ligands in the polymerization of tert‐butyl acrylate and methyl methacrylate. These ligands are less sterically hindered and have higher activities in the catalysis of ATRP of (meth)acrylates than 2,2′‐bipyridine. The polymerizations were faster and more controlled than with the 2,2′‐bipyridyl catalyst, but the tendency for bimolecular coupling increased. Even though the initiator was octafunctional, the resulting star polymers had only four arms. This indicates that the steric hindrance arising from the conformations of the initiators determines the structure of the polymer, but the ligand noticeably affects the controllability of the polymerization © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3349–3358, 2005 相似文献
14.
Carolina Toloza Porras Dagmar R. D'hooge Paul H. M. Van Steenberge Marie‐Françoise Reyniers Guy B. Marin 《大分子反应工程》2013,7(7):311-326
Kinetic Monte Carlo simulations are performed to investigate the capability of ICAR ATRP for the synthesis of well‐defined poly(isobornyl acrylate‐b‐styrene) block(‐like) copolymers using one‐pot semi‐batch and two‐pot batch procedures. The block copolymer quality is quantified via a block deviation (〈BD〉) value. For 〈BD〉 values lower than 0.30, the quality is defined as good and for well‐chosen polymerization conditions the formation of homopolymer chains upon addition of the second monomer can be suppressed. A better block quality is obtained when isobornyl acrylate is polymerized first. For lower Cu levels a one‐pot semi‐batch procedure allows a much faster ATRP and better control over the polymer properties than a two‐pot batch procedure.
15.
Zhaoxu Wang Nicolay V. Tsarevsky 《Journal of polymer science. Part A, Polymer chemistry》2017,55(7):1173-1182
Atom transfer radical polymerization (ATRP) of a viologen‐containing methacrylate, 1‐propyl‐1′‐[2‐(methacryloyloxy)ethyl]‐4,4′‐bipyridinium dihexafluorophosphate, is reported. To achieve good polymerization control, it was essential to use the viologen‐based monomer with a hexafluorophosphate instead of halide counterion, and 2,2′‐bipyridine as the ligand for the Cu‐based ATRP catalyst. The solubility of produced cationic polymers could be tuned by anion metathesis: the polymers with hexafluorophosphate counterions were soluble in organic solvents (e.g., acetone, DMF), and those with chloride counterions were water‐soluble. In aqueous solutions, the polymers (chloride salts) formed large aggregates, the sizes of which ranged from about 200 to about 400 nm (based on dynamic light scattering measurements) depending on the molecular weight. Upon addition of electrolytes (e.g., NaCl), the aggregates underwent dissociation. The apparent diffusion coefficients of the aggregates existing in aqueous solutions and the products of their electrolyte‐induced dissociation were measured by diffusion‐ordered NMR spectroscopy. The association–dissociation processes were also studied by fluorescence spectroscopy: the aqueous polymer solutions, which were originally fluorescent (λ em = 402 nm at λ ex = 350 nm), lost their fluorescence in the presence of NaCl. The addition of small amounts of the viologen‐containing polyelectrolytes to solutions of inorganic salts (NaCl) altered the crystal morphology of the salts due to interaction of the multiple charged pendant groups with small ions. In the presence of reducing agents, the pendant viologen groups were converted to viologen radical‐cations, which are prone to dimerize reversibly in aqueous solutions. Indeed, marked dimerization of viologen radical cations (with absorbance maxima at 520 and 870 nm) was observed in relatively dilute aqueous solutions (4 mg mL?1) upon addition of reducing agents (hydrazine). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55 , 1173–1182 相似文献
16.
Haifeng Yu Atsushi Shishido Tomiki Ikeda Tomokazu Iyoda 《Macromolecular rapid communications》2005,26(20):1594-1598
Summary: Based on a hydrophilic poly(ethylene oxide) macroinitiator (PEOBr), a novel amphiphilic diblock copolymer PEO‐block‐poly(11‐(4‐cyanobiphenyloxy)undecyl) methacrylate) (PEO‐b‐PMA(11CB)) was prepared by atom transfer radical polymerization (ATRP) using CuCl/1,1,4,7,10,10‐hexamethyltriethylenetriamine as a catalyst system. An azobenzene block of poly(11‐[4‐(4‐butylphenylazo)phenoxyl]undecyl methacrylate) was then introduced into the copolymer sequence by a second ATRP to synthesize the corresponding triblock copolymer PEO‐b‐PMA(11CB)‐b‐PMA(11Az). Both of the amphiphilic block copolymers had well‐defined structures and narrow molecular‐weight distributions, and exhibited a smectic liquid‐crystalline phase over a wide temperature range.
17.
18.
Atsushi Narumi Yoko Ohashi Daichi Togashi Yuta Saito Yuji Jinbo Yoshinobu Izumi Keigo Matsuda Toyoji Kakuchi Seigou Kawaguchi 《Journal of polymer science. Part A, Polymer chemistry》2012,50(17):3546-3559
Core crosslinked star (CCS)‐polymers with water‐soluble arms composed of poly(N‐hydroxyethylacrylamide) (PHEAA) are described. N‐Hydroxyethylacrylamide was polymerized by the atom transfer radical polymerization consisting of ethyl 2‐chloropropionate, copper(I) chloride (CuCl), and tris[2‐(dimethylamino)ethyl]amine in an ethanol/water mixed solvent at 20 °C. The obtained PHEAA‐arms were subsequently coupled using N,N′‐methylenebisacrylamide as the crosslinking agent and sodium L ‐ascorbic acid (AscNa) as the reaction activator. A total of 17 representative coupling reactions with diverse conditions are discussed together with the characterizations of the products mainly by size exclusion chromatograph equipped with the multiangle laser light scattering detector (SEC‐MALS). Consequently, the coupling reactions provided CCS‐polymers with PHEAA‐arms (CCS‐PHEAAs) having weight averaged‐molecular weights determined by SEC‐MALS (Mw,MALS) ranging from 63.8 kg mol?1 to 832 kg mol?1, which corresponded to the average arm‐number (Narm) ranging from 4.1 to 42, respectively. CCS‐PHEAA with the Mw,MALS of 250 kg mol?1 was isolated and characterized by small angle X‐ray scattering measurements in 0.05 M NaNO3 aq. at 25 °C, which was shown to possess a star‐shaped structure and exist as single molecules with a radius of gyration at the infinite dilution condition (<Rg2>z,01/2) of 74 ± 4 Å. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
19.
Satu Strandman Minna Luostarinen Satu Niemel Kari Rissanen Heikki Tenhu 《Journal of polymer science. Part A, Polymer chemistry》2004,42(17):4189-4201
Two novel multifunctional initiators for atom transfer radical polymerization (ATRP) were synthesized by derivatization of tetraethylresorcinarene. The derivatization induced a change in the conformation of the resorcinarene ring, which was confirmed by NMR spectroscopy. The initiators were used in ATRP of tert‐butyl acrylate and methyl methacrylate, producing star polymers with controlled molar masses and low polydispersities. Instead of the expected star polymers with eight arms, polymers with four arms were obtained. Conformational studies on the initiators by rotating‐frame nuclear Overhauser and exchange spectroscopy NMR and molecular modeling suggested that of eight initiator functional groups on tetraethylresorcinarene, four are too close to each other to be able to initiate the chain growth. Starlike poly(tert‐butyl acrylate) macroinitiators were used further in the block copolymerization of methyl methacrylate. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4189–4201, 2004 相似文献
20.
Hyun‐Ji Kim Yun Jae Lee Seung Sang Hwang Dong Hoon Choi Hoichang Yang Kyung‐Youl Baek 《Journal of polymer science. Part A, Polymer chemistry》2011,49(19):4221-4226
Regioregular poly(3‐hexyl thiophene) (rr‐P3HT)‐based star polymers were synthesized by a crosslinking reaction of the linear rr‐P3HT macroinitiator and ethylene glycol dimethacrylate (EGDMA) crosslinker through Ru‐based atom transfer radical polymerization (ATRP), where the rr‐P3HT macroinitiator was prepared by Grignard metathesis method (GRIM) followed by end functionalization of the ATRP initiator with chlorophenylacetate (CPA) to the rr‐P3HT. Relatively high molecular weight of the star polymers were obtained (Mp = 8,988,000 g/mol), which consisted of large numbers of the rr‐P3HT arm chains radiating from the EGDMA‐based microgel core. The yield of the star polymers were strongly affected by the added amount of the EGDMA crosslinker. The crystalline structure of the rr‐P3HT by intermolecular π‐π stacking interaction gradually decreased as the star polymer formed, which was confirmed by differential scanning calorimeter (DSC), atomic force microscopy (AFM), and electro‐optical analyses. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献