首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Raman spectrum of bukovskýite [Fe3+2(OH)(SO4)(AsO4)· 7H2O] has been studied and compared with that of an amorphous gel containing specifically Fe, As and S, which is understood to be an intermediate product in the formation of bukovskýite. The observed bands are assigned to the stretching and bending vibrations of (SO4)2− and (AsO4)3− units, stretching and bending vibrations and vibrational modes of hydrogen‐bonded water molecules, stretching and bending vibrations of hydrogen‐bonded (OH) ions and Fe3+ (O,OH) units. The approximate range of O H···O hydrogen bond lengths was inferred from the Raman spectra. Raman spectra of crystalline bukovskýite and of the amorphous gel differ in that the bukovskýite spectrum is more complex, the observed bands are sharp and the degenerate bands of (SO4)2− and (AsO4)3− are split and more intense. Lower wavenumbers of δ H2O bending vibrations in the spectrum of the amorphous gel may indicate the presence of weaker hydrogen bonds compared to those in bukovskýite. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Raman spectra of jáchymovite, (UO2)8(SO4)(OH)14·13H2O, were studied, complemented with infrared spectra, and compared with published Raman and infrared spectra of uranopilite, [(UO2)6(SO4)O2(OH)6(H2O)6]·6H2O. Bands related to the stretching and bending vibrations of (UO2)2+, (SO4)2−, (OH) and water molecules were assigned. U O bond lengths in uranyl and O H· · ·O hydrogen bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Raman spectra of pseudojohannite were studied and related to the structure of the mineral. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (SO4)2− units and of water molecules. The published formula of pseudojohannite is Cu6.5(UO2)8[O8](OH)5[(SO4)4]·25H2O. Raman bands at 805 and 810 cm−1 are assigned to (UO2)2+ stretching modes. The Raman bands at 1017 and 1100 cm−1 are assigned to the (SO4)2− symmetric and antisymmetric stretching vibrations. The three Raman bands at 423, 465 and 496 cm−1 are assigned to the (SO4)2−ν2 bending modes. The bands at 210 and 279 cm−1 are assigned to the doubly degenerate ν2 bending vibration of the (UO2)2+ units. U O bond lengths in uranyl and O H···O hydrogen bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Raman spectra of metauranospinite Ca[(UO2)(AsO4)]2·8H2O complemented with infrared spectra were studied. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (AsO4)3− units and of water molecules. U O bond lengths in uranyl and O H···O hydrogen bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Raman spectroscopy has been used to study the arsenate minerals haidingerite Ca(AsO3OH)·H2O and brassite Mg(AsO3OH)·4H2O. Intense Raman bands in the haidingerite spectrum observed at 745 and 855 cm−1 are assigned to the (AsO3OH)2−ν3 antisymmetric stretching and ν1 symmetric stretching vibrational modes. For brassite, two similarly assigned intense bands are found at 809 and 862 cm−1. The observation of multiple Raman bands in the (AsO3OH)2− stretching and bending regions suggests that the arsenate tetrahedrons in the crystal structures of both minerals studied are strongly distorted. Broad Raman bands observed at 2842 cm−1 for haidingerite and 3035 cm−1 for brassite indicate strong hydrogen bonding of water molecules in the structure of these minerals. OH···O hydrogen‐bond lengths were calculated from the Raman spectra based on empirical relations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2· H2O, was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As‐OH units, as well as the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O H···O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2− units in the crystal structure of burgessite was proved, which is in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Three crystalline ferric arsenate phases: (1) scorodite; FeAsO4·2H2O, (2) ferric arsenate sub‐hydrate (FAsH; FeAsO4·0.75H2O) and (3) basic ferric arsenate sulfate (BFAS; Fe[(AsO4)1−x(SO4)x(OH)xwH2O) synthesized by hydrothermal precipitation (175–225 °C) from Fe(III)‐AsO43−–SO42− solutions have been investigated via Raman and infrared spectroscopies. The spectroscopic nature of these high‐temperature Fe(III)‐ AsO43−–SO42− phases has not been extensively studied despite their importance to the hydrometallurgical industrial processing of precious metal (Au and Cu) arsenic sulfidic ores. It was found that scorodite, FAsH and BFAS all gave rise to very distinct arsenate, sulfate and hydroxyl vibrations. In scorodite and FAsH, the distribution of the internal arsenate modes was found to be distinct, with the factor effect being more predominant in the crystal system. For the crystallographically unknown BFAS phase, vibrational spectroscopy was used to monitor the arsenate ↔ sulfate solid solution behavior that occurs in this phase where the molecular symmetry of arsenate and sulfate in the crystal structure is reduced from an ideal Td to a distorted Td or C2/C2v symmetry. With the new collected vibrational data of the pure phases, the use of attenuated total reflectance infrared (ATR‐IR) spectroscopy was finally extended to investigate the nature of the arsenate in an industrial residue generated by pressure oxidation of a gold ore, where it was found that the arsenate was present in the form of BFAS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Raman spectroscopy measurements of polycrystalline Na2MoO4·2H2O (NMHO) and Na2MoO4 (NM) under hydrostatic pressure (from 0 to 10 GPa) were performed. This study allowed us to monitor the stretching and bending vibrations of MoO4 ions as well as the translational modes as a function of pressure. The pressure dependence of the wavenumbers of the modes indicates that the Na2MoO4·2H2O undergoes two phase transitions at about ∼3 and ∼4 GPa. When releasing pressure, we have observed that the original spectrum is recovered, thereby pointing to a reversible process. The Na2MoO4 (NM) starting phase was found to be stable up to 10 GPa. The pressure‐dependent Raman data for NM did not reveal any structural modification. The influence of the pressure‐transmitting medium on the phase transitions is also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Raman spectra of vajdakite, [(Mo6+O2)2(H2O)2As O5]·H2O, were studied and interpreted in terms of the structure of the mineral. The Raman spectra were compared with the published infrared spectrum of vajdakite. The presence of dimolybdenyl and diarsenite units and of hydrogen bonded water molecules was inferred from the Raman spectra which supported the known and published crystal structure of vajdakite. Mo O and O H···O bond lengths were calculated from the Raman spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Infrared reflection spectra of single crystals of BeSO4·4H2O and BeSO4·4D2O have been obtained in polarized light at 300°K and at 14°K in the region between 4000 cm?1 and 300 cm?1. By a Kronig-Kramers analysis, the frequencies of the infrared active transitions have been calculated. These transitions are attributed to internal vibrations of the water molecules and sulfate ions and, in the region between 1000 cm?1 and 300 cm?1, especially to internal and external vibrations of the tetrahedral Be++·4aqu-complexes. The vibrational modes of these complexes consist of a superposition of translational and librational modes of the water molecules and translational modes of the central Be++-ion. The vibrational frequencies and normal modes of this complex have been calculated in a central-force model, and force-constants have been determined by fitting the calculated frequencies to the observed spectra. The calculations have shown that the modes, which comprise mainly translational motions of the water molecules, are strongly coupled with librational motions of the water molecules. On the other hand, there exist pure librational modes with practically no admixture of translational motions. The optimum sets of force constants for the BeSO4·4H2O crystal and the BeSO4·4D2O crystal differ in a manner which can be understood under the assumption that the dimensions of the Be(D2O)4 complex are about 0.1 Å larger than those of the Be(H2O)4 complex. Some arguments supporting this conclusion will be discussed.  相似文献   

11.
Selenites and tellurites may be subdivided according to formula and structure. There are five groups, based upon the formulae (a) A(XO3), (b) A(XO3·) xH2O, (c) A2(XO3)3·xH2O, (d) A2(X2O5) and (e) A(X3O8). Of the selenites, molybdomenite is an example of type (a); chalcomenite, clinochalcomenite, cobaltomenite and ahlfeldite are minerals of type (b); mandarinoite Fe2Se3O9·6H2O is an example of type (c). Raman spectroscopy has been used to characterise the mineral mandarinoite. The intense, sharp band at 814 cm−1 is assigned to the symmetric stretching (Se3O9)6− units. Three Raman bands observed at 695, 723 and 744 cm−1 are attributed to the ν3 (Se3O9)6− anti‐symmetric stretching modes. Raman bands at 355, 398 and 474 cm−1 are assigned to the ν4 and ν2 bending modes. Raman bands are observed at 2796, 2926, 3046, 3189 and 3507 cm−1 and are assigned to OH stretching vibrations. The observation of multiple OH stretching vibrations suggests the non‐equivalence of water in the mandarinoite structure. The use of the Libowitzky empirical function provides hydrogen bond distances of 2.633(9) Å (2926 cm−1), 2.660(0) Å (3046 cm−1), 2.700(0) Å (3189 cm−1) and 2.905(3) Å (3507 cm−1). The sharp, intense band at 3507 cm−1 may be due to hydroxyl units. It is probable that some of the selenite units have been replaced by hydroxyl units. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Raman spectra of natrouranospinite complemented with infrared spectra were studied and related to the structure of the mineral. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (AsO4)3− units and of water molecules. U O bond lengths in uranyl and O H···O hydrogen bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Raman microscopy of the mixite mineral BiCu6(AsO4)3(OH)6·3H2O from Jáchymov and from Smrkovec (both Czech Republic) has been used to study their molecular structure. The presence of (AsO4)3−, (AsO3OH)2−, (PO4)3− and (PO3OH)2− units, as well as molecular water and hydroxyl ions, was inferred. O H···O hydrogen bond lengths were calculated from the Raman and infrared spectra using Libowitzky's empirical relation. Small differences in the Raman spectra between both samples were observed and attributed to compositional and hydrogen‐bonding network differences. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The infrared and Raman spectra of MoO3·2H2O are recorded and analysed on the basis of vibrations due to MoO6 octahedra and H2O molecules. Considerable changes in the frequencies of the octahedra have been observed due to strong distortion in the octahedral arrangement. The inactivev 6 vibration of O h symmetry became active in the Raman spectrum. Co-ordinated (aquated) and hydrated (interlayer) water molecules give rise to different frequencies.  相似文献   

15.
Tellurites may be subdivided according to formula and structure. There are five groups based upon the formulae (a) A(XO3), (b) A(XO3)·xH2O, (c) A2(XO3)3·xH2O, (d) A2(X2O5) and (e) A(X3O8). Raman spectroscopy has been used to study the tellurite minerals teineite and graemite; both contain water as an essential element of their stability. The tellurite ion should show a maximum of six bands. The free tellurite ion will have C3v symmetry and four modes, 2A1 and 2 E. Raman bands for teineite at 739 and 778 cm−1 and for graemite at 768 and 793 cm−1 are assigned to the ν1 (TeO3)2− symmetric stretching mode while bands at 667 and 701 cm−1 for teineite and 676 and 708 cm−1 for graemite are attributed to the ν3 (TeO3)2− antisymmetric stretching mode. The intense Raman band at 509 cm−1 for both teineite and graemite is assigned to the water librational mode. Raman bands for teineite at 318 and 347 cm−1 are assigned to the (TeO3)2−ν2(A1) bending mode and the two bands for teineite at 384 and 458 cm−1 may be assigned to the (TeO3)2−ν4(E) bending mode. Prominent Raman bands, observed at 2286, 2854, 3040 and 3495 cm−1, are attributed to OH stretching vibrations. The values for these OH stretching vibrations provide hydrogen bond distances of 2.550(6) Å (2341 cm−1), 2.610(3) Å (2796 cm−1) and 2.623(2) Å (2870 cm−1) which are comparatively short for secondary minerals. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Insight into the unique structure of hydrotalcites has been obtained using Raman spectroscopy. Gallium‐containing hydrotalcites of formula Mg4Ga2(CO3)(OH)12· 4H2O (2:1 Ga‐HT) to Mg8Ga2(CO3)(OH)20· 4H2O (4:1 Ga‐HT) have been successfully synthesized and characterized by X‐ray diffraction and Raman spectroscopy. The d(003) spacing varied from 7.83 Å for the 2:1 hydrotalcite to 8.15 Å for the 3:1 gallium‐containing hydrotalcite. Raman spectroscopy complemented with selected infrared data has been used to characterize the synthesized gallium‐containing hydrotalcites of formula Mg6Ga2(CO3)(OH)16· 4H2O. Raman bands observed at around 1046, 1048 and 1058 cm−1 are attributed to the symmetric stretching modes of the CO32− units. Multiple ν3 CO32− antisymmetric stretching modes are found at around 1346, 1378, 1446, 1464 and 1494 cm−1. The splitting of this mode indicates that the carbonate anion is in a perturbed state. Raman bands observed at 710 and 717 cm−1 assigned to the ν4 (CO32−) modes support the concept of multiple carbonate species in the interlayer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The mineral ardealite Ca2(HPO4)(SO4)·4H2O is a ‘cave’ mineral and is formed through the reaction of calcite with bat guano. The mineral shows disorder and the composition varies depending on the origin of the mineral. Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the mineral ardealite. The Raman spectrum is very different from that of gypsum. Bands are assigned to SO42− and HPO42− stretching and bending modes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Raman spectroscopy has been used to study vanadates in the solid state. The molecular structure of the vanadate minerals vésigniéite [BaCu3(VO4)2(OH)2] and volborthite [Cu3V2O7(OH)2·2H2O] have been studied by Raman spectroscopy and infrared spectroscopy. The spectra are related to the structure of the two minerals. The Raman spectrum of vésigniéite is characterized by two intense bands at 821 and 856 cm−1 assigned to ν1 (VO4)3− symmetric stretching modes. A series of infrared bands at 755, 787 and 899 cm−1 are assigned to the ν3 (VO4)3− antisymmetric stretching vibrational mode. Raman bands at 307 and 332 cm−1 and at 466 and 511 cm−1 are assigned to the ν2 and ν4 (VO4)3− bending modes. The Raman spectrum of volborthite is characterized by the strong band at 888 cm−1, assigned to the ν1 (VO3) symmetric stretching vibrations. Raman bands at 858 and 749 cm−1 are assigned to the ν3 (VO3) antisymmetric stretching vibrations; those at 814 cm−1 to the ν3 (VOV) antisymmetric vibrations; that at 508 cm−1 to the ν1 (VOV) symmetric stretching vibration and those at 442 and 476 cm−1 and 347 and 308 cm−1 to the ν4 (VO3) and ν2 (VO3) bending vibrations, respectively. The spectra of vésigniéite and volborthite are similar, especially in the region of skeletal vibrations, even though their crystal structures differ. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The mineral marthozite, a uranyl selenite, has been characterised by Raman spectroscopy at 298 K. The bands at 812 and 797 cm−1 were assigned to the symmetric stretching modes of the (UO2)2+ and (SeO3)2− units, respectively. These values gave the calculated U O bond lengths in uranyl of 1.799 and/or 1.814 Å. Average U O bond length in uranyl is 1.795 Å, inferred from the X‐ray single crystal structure analysis of marthozite by Cooper and Hawthorne. The broad band at 869 cm−1 was assigned to the ν3 antisymmetric stretching mode of the (UO2)2+ (calculated U O bond length 1.808 Å). The band at 739 cm−1 was attributed to the ν3 antisymmetric stretching vibration of the (SeO3)2− units. The ν4 and the ν2 vibrational modes of the (SeO3)2− units were observed at 424 and 473 cm−1. Bands observed at 257, and 199 and 139 cm−1 were assigned to OUO bending vibrations and lattice vibrations, respectively. O H···O hydrogen bond lengths were inferred using Libowiztky's empirical relation. The infrared spectrum of marthozite was studied for complementation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Raman spectroscopy has been used to study selected mineral samples of the copiapite group. Copiapite (Fe2+Fe3+(SO4)6(OH)2 · 20H2O) is a secondary mineral formed through the oxidation of pyrite. Minerals of the copiapite group have the general formula AFe4(SO4)6(OH)2 · 20H2O, where A has a + 2 charge and can be either magnesium, iron, copper, calcium and/or zinc. The formula can also be B2/3Fe4(SO4)6(OH)2 · 20H2O, where B has a + 3 charge and may be either aluminium or iron. For each mineral, two Raman bands are observed at around 992 and 1029 cm−1, assigned to the (SO4)2−ν1 symmetric stretching mode. The observation of two bands provides evidence for the existence of two non‐equivalent sulfate anions in the mineral structure. Three Raman bands at 1112, 1142 and 1161 cm−1 are observed in the Raman spectrum of copiapites, indicating a reduction of symmetry of the sulfate anion in the copiapite structure. This reduction in symmetry is supported by multiple bands in the ν2 and ν4(SO4)2− spectral regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号